Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774755

RESUMO

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Assuntos
Antraquinonas , Apoptose , Neoplasias da Mama , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Pleurotus , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Antraquinonas/farmacologia , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Feminino , Apoptose/efeitos dos fármacos , Apoptose/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Pleurotus/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Saudi Pharm J ; 32(5): 102052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590610

RESUMO

The objective of this study was to explore a novel methodology for the synthesis of nanocoated probiotics following their collection and cultivation under optimized conditions, in light of their significant contribution to human health. Probiotics are instrumental in sustaining immune health by modulating the gastrointestinal microbiota and facilitating digestion. However, the equilibrium they maintain can be adversely affected by antibiotic treatments. It is critical to investigate the vulnerability of probiotics to antibiotics, considering the potential implications. This research aimed to assess whether nanoparticle coating could augment the probiotics' resistance to antibiotic influence. A strain of Lactococcus lactis (L. lactis) was isolated, cultured, and comprehensively characterized utilizing state-of-the-art methodologies, including the VITEK® 2 compact system, VITEK® MS, and 16S rRNA gene sequencing. The nanoparticle coating was performed using iron (III) chloride hexahydrate and tannic acid, followed by an evaluation of the probiotics' resistance to a range of antibiotics. The analysis through scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a partial nanoparticle coating of the probiotics, which was further supported by UV/Vis spectroscopy findings, suggesting enhanced resistance to standard antibiotics. The results revealed that this strain possesses a unique protein profile and is genetically similar to strains identified in various other countries. Moreover, nano-encapsulation notably increased the strain's resistance to a spectrum of standard antibiotics, including Benzylpenicillin, Teicoplanin, Oxacillin, Vancomycin, Tetracycline, Rifampicin, Erythromycin, and Clindamycin. These findings imply that nanoparticle-coated probiotics may effectively counteract the detrimental effects of extended antibiotic therapy, thus preserving their viability and beneficial influence on gastrointestinal health.

3.
Int J Med Sci ; 21(4): 593-600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464834

RESUMO

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Assuntos
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água , Acetonitrilas , Anti-Inflamatórios
4.
World J Microbiol Biotechnol ; 40(3): 96, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349591

RESUMO

The preservation of drug stability in biological evidence during the processes of collection and storage poses a substantial obstacle to the progress of forensic investigations. In conjunction with other constituents, the microorganisms present in the samples play a vital role in this investigation. The present investigation employed the high-performance liquid chromatography (HPLC) technique to assess the stability of (1R,2 S)-(-)-2-methylamino-1-phenyl-1-propanol hydrochloride in plasma and urine samples that were inoculated with Escherichia coli. These samples were subjected to storage conditions of 37 °C for 48 h and - 20 °C for a duration of 6 months. Minimal inhibitory concentration (MIC) and Minimal bactericidal concentration (MBC) of MPPH against E. coli were determined using microdilution method. The stability of MPPH in plasma and urine samples inoculated with E. coli was investigated using HPLC method. The results showed the MIC and MBC of MPPH were 87.5 ± 25 ppm and 175 ± 50 ppm, respectively. While MPPH remained stable in plasma for 48 h at 37 °C, it showed a notable decrease of about 11% in stability when stored in urine for the same period and temperature. From the beginning of the first month, a decrease in the stability of the compound appeared in all samples that were stored at - 20 °C, and the decrease reached 7% for plasma samples and about 11% for urine samples. The decrease in the stability reached its peak in the sixth month, reaching more than 30% and 70% of plasma and urine samples preserved at - 20 °C. This work concluded that E. coli can negatively affect the stability of MPPH in plasma and urine samples. This may lead to incorrect conclusions regarding the analysis of biological samples in criminal cases.


Assuntos
1-Propanol , Escherichia coli , Cromatografia Líquida de Alta Pressão , 2-Propanol , Testes de Sensibilidade Microbiana
5.
Environ Res ; 248: 118304, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295979

RESUMO

The complexity of micro-tidal inlets arises from the combined action of littoral drift and tidal range on their stability. Consequently, understanding and evaluating their stability poses a significant challenge. This study aims to shed some insight on the assessment of inlet stability by employing Delft 3D model. The stability of the inlet between the ocean and estuary relies on the balance between the longshore transport rate and the spring tidal prism. Disrupting this equilibrium results in the closure of the inlets. The movement of sediments in the surf zone is primarily driven by longshore velocity, which acts as the driving force for littoral drift, which is estimated using Delft 3D wave model. The longshore transport rate is estimated by employing empirical relationships and numerical codes based on the obtained driving force. Subsequently, the stability of the inlet is assessed based on these estimations. The spring tidal prism refers to the discharge of water flowing into the ocean from inlets and estuaries. Flow velocity is determined using Delft 3D flow model. The input data for nearshore circulation resulting from waves and currents is primarily collected through field measurements and data collected from Indian National Centre for Ocean Information Services (INCOIS). For the current study, Muttukadu (12°47'13″N, 80°15'01″E) inlet, Kovalam along the East Coast of the Indian Peninsula is investigated by assessing its seasonal variations. This study contributes to the management of marine biological ecology, the expansion of small-scale artisanal fishing, the promotion of water sports-related tourism, the advancement of fishing harbor development, and the execution of coastal engineering projects.


Assuntos
Baías , Estuários , Água , Estações do Ano , Monitoramento Ambiental/métodos
6.
Int J Biol Macromol ; 259(Pt 1): 129264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199548

RESUMO

Biocomposites based on starch- gum acacia- agar, chitosan- starch- agar, starch- poly vinyl alcohol- agar were synthesized by simple, green route principles and the various characterization techniques like fourier infrared spectroscopy, SEM revealed the highly stable micro dimenstional that specially interacted with functional groups of polymers -herbicidal metabolites. Respective biocomposite was prepared by mixing equal volume of the selected polymer (1;1;1 ratio) with known concentration (100 mg of in distilled water followed by the addition of reconstituted herbicidal metabolites (100 mg or 0.1 g). Though all the biocomposites were capable of inducing herbicidal effect, notable impact was recorded in chitosan- starch- gum acacia treatment. In this case, the necrotic lesions were initiated at the early incubation period (6 h), progressively developing into dark brownish black lesions with 30.0 mm diameter. Release profile of the metabolites from the respective composite was also under in vitro and soil assay. Release profile study under in vitro and soil condition showed the sustained or controlled manner in distilled water and ethyl acetate treatment. No sign of toxic effect on the soil, parameters plant growth, rhizobacteria and peripheral blood cells clearly revealed the best biocompatibility of the presently proposed biocomposite.


Assuntos
Quitosana , Herbicidas , Quitosana/química , Amido/química , Goma Arábica , Ágar , Polímeros , Água , Solo
7.
J Infect Public Health ; 17(3): 450-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262082

RESUMO

BACKGROUND: In recent years, new drugs for the treatment of various diseases, thereby the emergence of antimicrobial resistance tremendously increased because of the increased consumption rate of various drugs. However, the irrational use of antibiotics increases the microbial resistance along with that the frequency of mortality associated with infections is higher. Broad-spectrum antibiotics were effectively against various bacteria and the unrestricted application of antibiotics lead to the emergence of drug resistance. The present study was aimed to detect the antibacterial properties of lipopeptide novel drug producing Streptomyces parvulus. METHODS: A lipopeptide-producing S. parvulus was isolated from the soil sample. The inhibitory effect of lipopeptide was detected against Gram-positive and Gram-negative bacteria. Bactericidal activity and minimum inhibitory concentration (MIC) were assayed. The IC50 value was analysed against ovarian and human melanoma cell lines. The experimental mouse model was infected withKlebsiella pneumoniae and treated with lipopeptide and bactericidal activity was determined. RESULTS: The results indicated that the antibacterial activity of lipopeptide ranges from 13 ± 1 mm to 32 ± 2 mm against Gram-positive and Gram-negative strains. The lowest MIC value was noted as 1.5 ± 0.1 µg/mL against K. pneumoniae and the highest against E. aerogenes (7.5 ± 0.2 µg/mL). The IC50 value was considerably high for the ovarian cell lines and human melanoma cell lines (426 µg/mL and 503 µg/mL). At 25 µg/mL concentration of lipopeptide, only 16.4% inhibition was observed in the ovarian cell line whereas 20.2% inhibition was achieved at this concentration in the human melanoma cell line. Lipopeptide inhibited bacterial growth and was completely inhibited at a concentration of 20 µg/mL. Lipopeptide reduced bacterial load in experimental mice compared to control (p < 0.05). CONCLUSION: Lipopeptide activity and its non-toxic nature reveal that it may serve as a lead molecule in the development of a novel drug.


Assuntos
Infecções Bacterianas , Melanoma , Streptomyces , Humanos , Animais , Camundongos , Antibacterianos/química , Lipopeptídeos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Biofilmes , Testes de Sensibilidade Microbiana
8.
Environ Res ; 245: 117913, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145737

RESUMO

The current work investigates bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbons utilizing the biomass-electrokinetic (BIO-EK) approaches. The use of natural surfactants derived from plant biomass may improve remediation capacity by enhancing the solubility of organic pollutants. Sapindus mukorossi, a natural surfactant producer, was extracted from plant biomass in this study. The crude oil biodegradation efficiency was reported to be 98 %. In nature, FTIR confirms that plant biomass is lipopeptide. GCMS revealed that the crude oil (C7 - C23) was efficiently bio-degraded from lower to higher molecular weight. The application of natural surfactants in electokinetic remediation increased the plant biomass degradation of crude oil polluted soil by 98% compared to electrokinetic 55% in 2 days. Natural surfactant improves hydrocarbon solubilization and accelerates hydrocarbon electro migration to the anodic compartment, as confirmed by the presence of greater total organic content than the electrokinetic. This study proves that BIO-EK compared with a natural surfactant derived from plant biomass may be utilized to improve in situ bioremediation of crude oil polluted soils.


Assuntos
Petróleo , Poluentes do Solo , Tensoativos , Petróleo/metabolismo , Solo , Biomassa , Biodegradação Ambiental , Hidrocarbonetos , Poluentes do Solo/análise , Microbiologia do Solo
9.
Environ Monit Assess ; 196(1): 93, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150146

RESUMO

There is an urgent requirement for the improvement of the white leg shrimp, Litopenaeus vannamei; health-related indices; and immunity due to emerging diseases. Recently, probiotics have been playing an important role in L. vannamei health management. Therefore, the current pond trial was to evaluate the probiotic proficiency of commercial probiotic products of THIONIL (THIO) on the enhancement of the water, soil, growth, digestibility, survival, immune-related indices, and susceptibility of L. vannamei to infection. The study was carried out in the major shrimp culturing regions of Kavali, Nellore (Andhra Pradesh), and Ponneri (Tamil Nadu), India. Six groups (lacks/ha) of the experimental L. vannamei were allocated, including a control group (THIO 0%-untreated) and groups containing 2%, 4%, 6%, 8%, and 10% of THIO that were encapsulated with commercial feed (CP Aqua). Bioassays were performed on PLs/ shrimp at various days interval of 0, 5, 25, 50, 100, and 123th to assess productivity, anti-vibrio activity, and digestive enzyme for digestibility, histological and immunological indices, and cytotoxicity in Artemia nauplii. Significant differences were observed in the increased growth (35.71 ± 3.24 g/shrimp) and digestive parameters in 10% THIO-fed shrimp. Although in contrast to the control group, the other THIO-fed prawn groups also displayed appreciable development. The findings showed that, in comparison to the control, the gill, hepatopancreas, and stomach had reduced tissue damage with 10% THIO. Furthermore, Vibrio parahaemolyticus (0.008 × 104 cfu/g) and Vibrio harveyi (0.051 × 105 cfu/g) (vibriosis) were potentially resistant to the 10% THIO-fed group. In addition, THIO-fed prawns (10%) showed significant improvements in immune-related expresses (proPO, SOD, and SOA) in comparison to the control. In conclusion, the findings showed that the THIO treatment prawns significantly improved the quality of their water (pH, ammonia, nitrogen dioxide, hydrogen sulfide, and DO) and soil (Pb, Cr, Hg, Mg, Cu, Fe, and Ni), increased and demonstrated protection against vibrio infections.


Assuntos
Poluentes Ambientais , Penaeidae , Animais , Índia , Lagoas , Monitoramento Ambiental
10.
Nanomaterials (Basel) ; 13(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133025

RESUMO

Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37987793

RESUMO

Guilandina bonduc L. is popularly known as a fever nut that grows widely in evergreen forests and moist deciduous forests with a pantropical distribution. The plant is highly therapeutic in various systems of medicine, including Ayurveda, Siddha, and homeopathy. The purpose of this review is to analyze the published data on G. bonduc, including traditional uses, taxonomic position, botanical description, phytochemistry, pharmacological properties, and toxicological assessment of its various parts. Phytochemical and pharmacological studies were the main focus of this review. The previously published research on G. bonduc was tracked from scientific databases such as Online Library, Google, Taylor and Francis, PubMed, Research Gate, Scopus, Springer, Wiley, Web of Sciences. Numerous phytochemical, pharmaceutical, and pharmacological studies have been carried out on the various parts of G. bonduc. To date, more than 97 phytochemicals have been isolated from the leaves, roots, stems, stem bark, flowers, twigs, and seeds of this plant. The phytochemicals isolated from the plants are flavonoids, homoisoflavonoids, terpenoids, diterpenoids, steroids, fatty acids, alkanes, acids, phenols, ketones, esters, amides, azides, silanes, and ether groups. This plant has been extensively studied in in vitro and in vivo pharmacological experiments, where it showed analgesic, anti-inflammatory, antioxidant, antiviral, antidiabetic, abortive, anticataleptic, immunomodulatory, and antiestrogenic effects. This comprehensive review revealed that phytochemicals isolated from various parts of G. bonduc have significant therapeutic efficacy, with promising anticancer, antidiabetic, hepatoprotective, antioxidant, and antimicrobial activities. This review provides a good source of information for the development of a drug using modern scientific tools, in view of its underexplored traditional uses. Further studies on preclinical and clinical trials and toxicological studies on the bioactive molecules of G. bonduc to validate its traditional uses are warranted.

12.
J Infect Public Health ; 16 Suppl 1: 26-32, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980240

RESUMO

BACKGROUND: Acinetobacter baumannii is an emerging multidrug-resistant bacterium and is considered as one of the important causes of nosocomial infections. OBJECTIVES: The main objectives are to determine the drug-resistant pattern of beta-lactamase-producing A. baumannii, colistin-induced structural and biochemical changes. METHODS: A. baumannii strains were isolated from the restrooms using the selective media, viz., restroom door, restroom floor, washing area, and restroom tap. A total of 120 samples were collected from all four sampling sites. These strains and their drug-resistance patterns were identified. Then carbapenem-resistance was analyzed and the occurrence of the drug-resistant gene (blaOXA-23) was determined. Colistin was applied at various concentrations (20 - 100 µg/mL) and the molecular mechanism of A. baumannii was analysed. RESULTS: The bacterial population was high on doors (53 ±â€¯2 CFU/mL), followed by restroom tap (19 ±â€¯1 CFU/mL), restroom floor (14 ±â€¯3 CFU/mL), and washing area (3 ±â€¯0 CFU/mL), respectively. A total of 343 A. baumannii strains were isolated from the 120 samples obtained for one year from the restroom. The isolated bacteria showed resistance to selected carbapenems, with 100% isolates being resistant to imipenem, followed by cefotaxime (1.4 ±â€¯0.2% susceptibility). More blaOXA-23 gene carrying strains were isolated from restroom tap(89 ±â€¯2.1%) than other sources. Colistin exhibited bactericidal activity against drug-resistant A. baumannii. Treating A. baumannii strain with 100 µg/mL colistin induced cell membrane roughness in vitro. Scanning Electron Microscopy (SEM) analysis revealed moderate cell shrinkage after treatment with colistin. Bacterial cells treated with hydrogen peroxide or colistin for 30 min induced the production of hydroxyl radicals. The bacterial lysis increased fluorescence and hydroxyl radicals, and released cellular protein and sugars. CONCLUSIONS: The isolated A. baumannii was resistant to imipenem and showed susceptibility to colistin. Colistin disrupted cell membrane in drug-resistant A. baumannii in vitro. The regular screening for drug-resistance among A. baumannii strains can help monitor the outbreak of A. baumannii and manage control measures.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Carbapenêmicos/farmacologia , Hospitais , beta-Lactamases/genética , beta-Lactamases/metabolismo , Imipenem , Farmacorresistência Bacteriana Múltipla/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-37792174

RESUMO

In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR). Furthermore, the purified compound was shown 94% inhibition against biofilm-producing Proteus mirabilis (P. mirabilis) (MN396686) at 70 µg/mL concentrations. Furthermore, the metabolic activity, exopolysaccharide damage, and hydrophobicity degradation results of identified compound exhibited excellent inhibition at 100 µg/mL concentration. Furthermore, the confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM) results were shown with intracellular damages and architectural changes in bacteria. Consecutively, the in vivo toxicity effect of the compound against Artemia franciscana (A. franciscana) was shown to have a low mortality rate at 100 µg/mL. Finally, the molecular docking interaction between the quorum sensing (QS) genes and identified compound clearly suggested that the identified compound 2,6-Di-tert-butyl, 1,4-benzoquinone has anti-quorum sensing and anti-biofilm activities against P. mirabilis (MN396686).

14.
Heliyon ; 9(9): e19965, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809934

RESUMO

The therapeutic properties of 5-Bromonicotinatic acid (5BNA) were studied for antiviral illnesses like Hepatitis A, Hepatitis B and Hepatitis C and the influence of electron-donating and electron-withdrawing properties of functional groups on the nicotinic acid was evaluated and represented in this study using the DFT approach. The molecular parameters were determined for both gases as well as for various solvent phases. The reactive areas in the compound are examined utilising Fukui analysis. The molecular interactions are accomplished by recognising the different types of bonding found in the compound using the AIM, ELF, LOL, RDG and IRI. Solvation investigations were demonstrated to have an influence on molecular orbital energy, ESP, UV-Vis and NLO analyses. Electron-hole, NBO and Hirshfeld investigations are used to investigate the transfer of charges and interactions inside the molecule. The method of vibrational spectroscopy (IR and Raman) is used to differentiate and identify the various types of vibrations displayed by the compound. The hydropathy plots for the proteins 2A4O, 6CWD and 2OC8 associated with Hepatitis A, Hepatitis B and Hepatitis C illustrate the disquiet and attraction of the amino acids towards the water.

15.
J Infect Public Health ; 16(11): 1821-1829, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742446

RESUMO

BACKGROUND: Small colony variants (SCVs) are biotypes of bacteria that have a size of approximately one-tenth or less of the wild types and has distinct characteristics comparing to the wild type strains. Clinical SCVs are usually associated with persistent infection and require a long-term treatment program with antibiotics. In Saudi Arabia, there are few studies about SCVs Escherichia coli for this reason, this study is aimed to investigate the ability of gentamicin to mutate E. coli ATCC 25922 to produce small SCVs and investigate the genotypes and phenotypes changes and stress tolerance comparing to clinical SCVs E. coli and normal clinical E. coli Isolated from blood samples. METHODS: In this investigation, four clinical blood samples were collected ted from patients and the cultivation and isolation were carried out in KFMC between December 2019 and February 2021. The identification of positive blood culture samples was done using phoenix MD. Non-SCV E. coli ATCC25922 were mutated to SCV using exposure to increasing gradual concentrations of gentamicin at 100-generation intervals. Biochemical features and susceptibility to standard antibiotics using automated Phoenix MD 50 and. The survival assays were done using several stresses including heat shock, low pH, high osmotic pressure, and oxidative pressure. Virulence genes screening included the detection of genes that encoded to α-haemolysin, CS12 fimbriae, F17-like fimbrial adhesion, P-related fimbriae, yersiniabactin siderophore system, P-fimbriae, aerobactin, iron-regulated genes using PCR and gel electrophoresis. RESULTS: The data from the mutating E. coli ATCC 25922 small colony test with gentamicin revealed that the first emergence of the multidrug resistance (MDR) SCV E. coli strain occurred at generation number 250, corresponding to a gentamicin concentration of 57 g/ml. Pathogenicity islands detection revealed that all tested E. coli strains have PAI IV 536 genes on their chromosomes furthermore, mutated SCV E. coli ATCC 25922 acquired PAII CFT073 and PAI IV 536. Survival tests showed no significant differences changes in tolerance of mutated SCVs comparing to parental strain. CONCLUSION: The present work concluded that gentamicin sub-MIC concentration gradual exposure can induce mutation responsible for SCV formation and evolving of MDR E. coli strains. The mutated SCVs evolved high-level aminoglycoside resistance for gentamicin and resistance to amikacin, it also developed resistance to 2 cephalosporin antibiotics cefuroxime, and cephalothin and a resistance to aztreonam.

16.
Arch Microbiol ; 205(8): 282, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432479

RESUMO

In the present study, the individual cultures of Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae) were treated with morphologically modified silver nanoparticles (Ag NPs) and were found to display zones of inhibition of ~ 8 mm, 16 mm, 20 mm, and 22 mm (P. mirabilis) and 6 mm, 14 mm, 20 mm, and 24 mm (K. pneumoniae) at concentrations of 25 µg/ml, 50 µg/mL, 75 µg/mL, and 100 µg/mL, respectively. In addition, turbidity tests were performed based on O. D. values, which exhibited 92% and 90% growth inhibitions at 100 µg/mL concentration for P. mirabilis and K. pneumoniae, respectively. Furthermore, the IC50 concentration of Ag NPs was established for A549 lung cancer cells and found to be at 500 µg/mL. Evidently, the morphological variation of Ag NPs treated A549 lung cancer cells was exhibited with differential morphology studied by phase-contrast microscopy. The results demonstrated that the synthesized Ag NPs was not only efficient against gram-positive bacteria but also against gram-negative bacteria and A549 cancer cells, suggesting that the potential of these biosynthesized Ag NPs is a future drug discovery source for inhibiting bacteria and cancer cells.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Descoberta de Drogas , Klebsiella pneumoniae , Proteus mirabilis
17.
Saudi J Biol Sci ; 30(6): 103680, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37266409

RESUMO

The stability of drugs in biological evidence during collection and storage is of particular concern in forensic investigations. Microbes in the samples and other elements are an essential component of these investigations. In the current study, the HPLC method was used to examine the stability of (1R, 2S)-(-)-Ephedrine hydrochloride in plasma and urine samples inoculated with C. albicans after storage at 37 °C for 48 h and -20 °C for six months. In the stability experiment, MIC50% of (1R, 2S)-(-)-Ephedrine hydrochloride was applied according to MIC and MFC that were determined in this work. This drug had MIC and MFC of 50 and 100 ppm, respectively. In HPLC analysis, the standard (1R, 2S)-(-)-Ephedrine hydrochloride had a retention time of 1.63 and was used to identify this drug in samples that had or had not been exposed to C. albicans. The findings demonstrated that within 48 h at 37 °C, C. albicans had an impact on the drug concentration (10% and more than 15%, respectively, were lost in plasma and urine samples inoculated with C. albicans). In plasma samples, the drug content remained stable at -20 °C for three months, although it degraded in urine samples after one month. In plasma and urine samples, the concentration reduction had surpassed 70% and 50% by the sixth month, respectively. The results of this investigation show that C. albicans can change the stability of (1R, 2S)-(-)-Ephedrine hydrochloride in plasma and urine samples that contain MIC50% of Ephedrine hydrochloride.

18.
Saudi Pharm J ; 31(6): 911-920, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234348

RESUMO

There is no doubt that the risk of drug-resistant pathogens and cancer diseases is on the rise. So, the goal of this study was to find out how effective silver nanoparticles (Ag-NPs) made by Senna alexandrina are at fighting these threats. In this work, S. alexandrina collected from Medina, Saudi Arabia was used and the biosynthesis method was applied to produce the Ag-NPs. The characterization of Ag-NPs was done using different analytical techniques, including UV spectroscopy, FT-IR, TEM, and XRD analysis. The MIC, MBC, and MTT protocols were applied to confirm the bioactivity of the Ag-NPs as antibacterial and anticancer bioagents. The findings reported indicating that the aqueous extract of S. alexandrina leaves, grown naturally in Saudi Arabia, is ideal for the production of bioactive Ag-NPs. The hydroxyl, aliphatic, alkene, N-H bend of primary amines, C-H bonds, and C-O bonds of alcohol were detected in this product. The small, sphere-shaped particles (4-7 nm) were the most prevalent among the bioactive Ag-NPs produced in this work. These nanoparticles inhibited some important multidrug-resistant pathogens (MDRPs) (Escherichia coli, Acinetobacter baumanii/haemolyticus, Staphylococcus epidermidis, and Methicillin-resistant Staphylococcus aureus (MRSA)), as well as their ability to inhibit breast cancer cells (MCF-7 cells). The MIC of Ag-NPs ranged from 0.03 to 0.6 mg/mL, while their MBC ranged from 0.06 to 2.5 mg/mL. Anticancer activity test showed that IC50 of the Ag-NPs against tested breast cancer cells was 61.9 ± 3.8 µg/mL. According to the current results, biosynthesis using S. alexandrina leaves grown naturally in Saudi Arabia was an ideal technique for producing bioactive Ag-NPs that could be used to combat a variety of MDRPs and cancer diseases.

19.
Chem Biodivers ; 20(6): e202300315, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37246487

RESUMO

Citral (1a), a bioactive component of Cymbopogon citratus (lemongrass) could be isolated and semi-synthetic analogs synthesized with improved therapeutic properties. Herein we first report describes citral (1a) as a primary material for the synthesis of benzimidazole derivatives between various o-phenylenediamines (2a-l) in the presence of Diisopropylethylamine (DIPEA) as a commercially available environmentally benign base, ethanol as a green solvent and the yield of all benzimidazole derivatives (3a-l) was between 68-76 %; The semi-synthetically prepared benzimidazole derivatives (3a-l) were assessed for their anti-bacterial and anti-fungal properties. The benzimidazole compounds (3a-b, and 3g-j) exhibit good anti-microbial activity. In addition, in silico study was carried out to determine the specific binding affinity of the diamine halogen substituted benzimidazole derivatives to the specific target proteins. In silico analysis revealed a high correlation between docking results and experimental results. Finally, benzimidazole demonstrated significant antibacterial and antifungal activity. Zebrafish embryos were subjected to In vivo toxicological test found that all of the benzimidazole compounds (3a-l) were non-toxic and had low embryotoxicity after 96 h, with an LC50 of 36.425 µg, which could facilitate the design of novel antimicrobial agents using a cost-effective method.


Assuntos
Anti-Infecciosos , Peixe-Zebra , Animais , Aldeídos Monoterpenos e Cetonas , Diaminas , Ciclização , Monoterpenos , Aldeídos , Anti-Infecciosos/química , Antibacterianos/farmacologia , Benzimidazóis , Estresse Oxidativo , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
20.
Micromachines (Basel) ; 14(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985101

RESUMO

In this work, CeO2 nanoparticles, as well as CeO2 nanocomposites with plasmonic silver nanoparticles, were synthesized using a simple sol-gel process. The concentration of silver in the composites varied from 0.031-0.25 wt%. Cerium hydroxide dried gel was calcined at temperatures from 125 to 800 °C to obtain CeO2. It was shown that, at an annealing temperature of 650 °C, single-phase CeO2 nanopowders with an average particle size in the range of 10-20 nm can be obtained. The study of acid-base properties showed that with an increase in the calcination temperature from 500 to 650 °C, the concentration of active centers with pKa 9.4 and 6.4 sharply increases. An analysis of the acid-base properties of CeO2-Ag nanocomposites showed that with an increase in the silver concentration, the concentration of centers with pKa 4.1 decreases, and the number of active centers with pKa 7.4 increases. In a model experiment on dye photodegradation, it was shown that the resulting CeO2 and CeO2-Ag nanopowders have photocatalytic activity. CeO2-Ag nanocomposites, regardless of the silver concentration, demonstrated better photocatalytic activity than pure nanosized CeO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...