Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293010

RESUMO

Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.

2.
J Mol Biol ; 435(16): 168182, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328094

RESUMO

Biomolecular condensates (BMCs) play important roles incellular structures includingtranscription factories, splicing speckles, and nucleoli. BMCs bring together proteins and other macromolecules, selectively concentrating them so that specific reactions can occur without interference from the surrounding environment. BMCs are often made up of proteins that contain intrinsically disordered regions (IDRs), form phase-separated spherical puncta, form liquid-like droplets that undergo fusion and fission, contain molecules that are mobile, and are disrupted with phase-dissolving drugs such as 1,6-hexanediol. In addition to cellular proteins, many viruses, including influenza A, SARS-CoV-2, and human immunodeficiency virus type 1 (HIV-1) encode proteins that undergo phase separation and rely on BMC formation for replication. In prior studies of the retrovirus Rous sarcoma virus (RSV), we observed that the Gag protein forms discrete spherical puncta in the nucleus, cytoplasm, and at the plasma membrane that co-localize with viral RNA and host factors, raising the possibility that RSV Gag forms BMCs that participate in the intracellular phase of the virion assembly pathway. In our current studies, we found that Gag contains IDRs in the N-terminal (MAp2p10) and C-terminal (NC) regions of the protein and fulfills many criteria of BMCs. Although the role of BMC formation in RSV assembly requires further study, our results suggest the biophysical properties of condensates are required for the formation of Gag complexes in the nucleus and the cohesion of these complexes as they traffic through the nuclear pore, into the cytoplasm, and to the plasma membrane, where the final assembly and release of virus particles occurs.


Assuntos
Condensados Biomoleculares , Produtos do Gene gag , Proteínas Intrinsicamente Desordenadas , Vírus do Sarcoma de Rous , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virologia , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus do Sarcoma de Rous/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase
3.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696329

RESUMO

Antibodies targeting the spike (S) and nucleocapsid (N) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential tools. In addition to important roles in the treatment and diagnosis of infection, the availability of high-quality specific antibodies for the S and N proteins is essential to facilitate basic research of virus replication and in the characterization of mutations responsible for variants of concern. We have developed panels of mouse and rabbit monoclonal antibodies (mAbs) to the SARS-CoV-2 spike receptor-binding domain (S-RBD) and N protein for functional and antigenic analyses. The mAbs to the S-RBD were tested for neutralization of native SARS-CoV-2, with several exhibiting neutralizing activity. The panels of mAbs to the N protein were assessed for cross-reactivity with the SARS-CoV and Middle East respiratory syndrome (MERS)-CoV N proteins and could be subdivided into sets that showed unique specificity for SARS-CoV-2 N protein, cross-reactivity between SARS-CoV-2 and SARS-CoV N proteins only, or cross-reactivity to all three coronavirus N proteins tested. Partial mapping of N-reactive mAbs were conducted using truncated fragments of the SARS-CoV-2 N protein and revealed near complete coverage of the N protein. Collectively, these sets of mouse and rabbit monoclonal antibodies can be used to examine structure/function studies for N proteins and to define the surface location of virus neutralizing epitopes on the RBD of the S protein.


Assuntos
Betacoronavirus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Reações Cruzadas , Epitopos/metabolismo , Humanos , Camundongos , Testes de Neutralização , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Ligação Proteica/imunologia , Coelhos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo
4.
Viruses ; 12(5)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455905

RESUMO

Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a "Ψ" packaging signal located in the gRNA 5'-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs efficiently. The simplicity of RSV Ψ makes it an informative model to examine the mechanism of retroviral gRNA packaging, which is incompletely understood. Little is known about the structure of dimerization initiation sites or specific Gag interaction sites of RSV gRNA. Using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), we probed the secondary structure of the entire RSV 5'-leader RNA for the first time. We identified a putative bipartite dimerization initiation signal (DIS), and mutation of both sites was required to significantly reduce dimerization in vitro. These mutations failed to reduce viral replication, suggesting that in vitro dimerization results do not strictly correlate with in vivo infectivity, possibly due to additional RNA interactions that maintain the dimers in cells. UV crosslinking-coupled SHAPE (XL-SHAPE) was next used to determine Gag-induced RNA conformational changes, revealing G218 as a critical Gag contact site. Overall, our results suggest that disruption of either of the DIS sequences does not reduce virus replication and reveal specific sites of Gag-RNA interactions.


Assuntos
Genoma Viral , RNA Viral/genética , Vírus do Sarcoma de Rous/genética , Animais , Dimerização , Produtos do Gene gag/metabolismo , Genômica , Conformação de Ácido Nucleico , RNA Viral/química , Sarcoma Aviário/virologia , Análise de Sequência de RNA , Montagem de Vírus , Replicação Viral
5.
Viruses ; 8(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657110

RESUMO

Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.

6.
Virology ; 486: 307-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26584240

RESUMO

Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages.


Assuntos
Regiões 5' não Traduzidas , Infecções por HIV/metabolismo , HIV-1/metabolismo , Doenças das Aves Domésticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecções por Retroviridae/metabolismo , Retroviridae/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Dados de Sequência Molecular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Retroviridae/classificação , Retroviridae/genética , Infecções por Retroviridae/genética , Infecções por Retroviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...