Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 14(1): 143, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530877

RESUMO

Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson's disease. Here, we study the basic neurobiology of VPS35 and Parkinson's disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.


Assuntos
Endossomos/fisiologia , Ácido Glutâmico/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Mutação Puntual , Proteínas de Transporte Vesicular/genética , Animais , Células Cultivadas , Dendritos/metabolismo , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores de AMPA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo
2.
Neurosci Lett ; 706: 114-122, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31082451

RESUMO

DNAJC13 (RME-8) is a core co-chaperone that facilitates membrane recycling and cargo sorting of endocytosed proteins. DNAJ/Hsp40 (heat shock protein 40) proteins are highly conserved throughout evolution and mediate the folding of nascent proteins, and the unfolding, refolding or degradation of misfolded proteins while assisting in associated-membrane translocation. DNAJC13 is one of five DNAJ 'C' class chaperone variants implicated in monogenic parkinsonism. Here we examine the effect of the DNAJC13 disease-linked mutation (p.Asn855Ser) on its interacting partners, focusing on sorting nexin 1 (SNX1) membrane dynamics in primary cortical neurons derived from a novel Dnajc13 p.Asn855Ser knock-in (DKI) mouse model. Dnajc13 p.Asn855Ser mutant and wild type protein expression were equivalent in mature heterozygous cultures (DIV21). While SNX1-positive puncta density, area, and WASH-retromer assembly were comparable between cultures derived from DKI and wild type littermates, the formation of SNX1-enriched tubules in DKI neuronal cultures was significantly increased. Thus, Dnajc13 p.Asn855Ser disrupts SNX1 membrane-tubulation and trafficking, analogous to results from RME-8 depletion studies. The data suggest the mutation confers a dominant-negative gain-of-function in RME-8. Implications for the pathogenesis of Parkinson's disease are discussed.


Assuntos
Membrana Celular/metabolismo , Chaperonas Moleculares/genética , Transtornos Parkinsonianos/genética , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/genética , Alelos , Animais , Células Cultivadas , Endossomos/metabolismo , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Transtornos Parkinsonianos/metabolismo , Transporte Proteico , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
NPJ Parkinsons Dis ; 4: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155515

RESUMO

Vacuolar protein sorting 35 (VPS35) is a core component of the retromer trimer required for endosomal membrane-associated protein trafficking. The discovery of a missense mutation, Vps35 p.D620N implicates retromer dysfunction in the pathogenesis of Parkinson's disease (PD). We have characterized a knock-in mouse with a Vps35 p.D620N substitution (hereafter referred to as VKI) at 3 months of age. Standardized behavioral testing did not observe overt movement disorder. Tyrosine hydroxylase (TH)-positive nigral neuron counts and terminal expression in striata were comparable across genotypes. Fast scan cyclic voltammetry revealed increased dopamine release in VKI striatal slices. While extracellular dopamine collected via striatal microdialysis of freely moving animals was comparable across genotypes, the ratio of dopamine metabolites to dopamine suggests increased dopamine turnover in VKI homozygous mice. Western blot of striatal proteins revealed a genotype-dependent decrease in dopamine transporter (DAT) along with an increase in vesicular monoamine transporter 2 (VMAT2), albeit independent of changes in other synaptic markers. The reduction in DAT was further supported by immunohistochemical analysis. The data show that the dopaminergic system of VKI mice is profoundly altered relative to wild-type littermates. We conclude early synaptic dysfunction contributes to age-related pathophysiology in the nigrostriatal system that may lead to parkinsonism in man.

4.
Healthc Manage Forum ; 31(3): 103-107, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29717648

RESUMO

The relationship between brain and behaviour has perplexed philosophers and scientists since the time of the ancient Greeks. Recent technological advances have allowed neuroscience to flourish, alongside growing romanticism that reductionist studies will allow us to understand complex interpersonal behaviours. Organizational cognitive neuroscience and neuroleadership are newly established interdisciplinary fields that use neuroscientific techniques to answer questions about behaviours within organizations. Neuroleadership aims to discover screening tools for good leaders, to improve leadership skills, and to identify unconscious factors affecting behaviour in hopes of improving management and leadership practices. Although proponents of neuroleadership are optimistic, if we know anything about the functions of the human brain and our interpersonal behaviours, it is that they are exquisitely complex and context dependant. Here, we briefly discuss the major themes emerging in the new field of neuroleadership and the limitations and potential consequences of applying findings from the field prematurely and with blind optimism.


Assuntos
Liderança , Neuropsicologia , Especialização , Administradores de Instituições de Saúde/psicologia , Humanos , Comunicação Interdisciplinar
5.
Elife ; 62017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28930069

RESUMO

LRRK2 mutations produce end-stage Parkinson's disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.


Assuntos
Envelhecimento , Dopamina/metabolismo , Comportamento Exploratório , Ácido Glutâmico/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Animais , Técnicas de Introdução de Genes , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA