Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 65, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402189

RESUMO

BACKGROUND: Camels harbouring multidrug-resistant Gram-negative bacteria are capable of transmitting various microorganisms to humans. This study aimed to determine the distribution of anti-microbial resistance among Escherichia coli (E. coli) isolated from the feces of apparently healthy camels in Egyptian abattoirs. Additionally, we sought to characterize Shiga toxin-producing E. coli (STEC) strains, assess their virulence potential, and investigate the possibility of camels spreading carbapenem- and colistin-resistant E. coli. METHODS: 121 fecal swaps were collected from camels in different abattoirs in Egypt. Isolation and identification of E. coli were performed using conventional culture techniques and biochemical identification. All isolates obtained from the examined samples underwent genotyping through polymerase chain reaction (PCR) of the Shiga toxin-encoding genes (Stx1 and Stx2), the carbapenemase-encoding genes (blaKPC, blaOXA-48, blaNDM, and blaVIM), and the mcr genes for mcr-1 to mcr-5. RESULT: Bacteriological examination revealed 75 E. coli isolates. PCR results revealed that one strain (1.3%) tested positive for Stx1, and five (6.6%) were positive for Stx2. Among the total 75 strains of E. coli, the overall prevalence of carbapenemase-producing E. coli was 27, with 7 carrying blaOXA48, 14 carrying blaNDM, and 6 carrying blaVIM. Notably, no strains were positive for blaKPC but a high prevalence rate of mcr genes were detected. mcr-1, mcr-2, mcr-3, and mcr-4 genes were detected among 3, 2, 21, and 3 strains, respectively. CONCLUSION: The results indicate that camels in Egypt may be a primary source of anti-microbial resistance (AMR) E. coli, which could potentially be transmitted directly to humans or through the food chain.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Animais , Colistina/farmacologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Camelus , beta-Lactamases/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli Shiga Toxigênica/genética , Toxinas Shiga/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos
2.
Trop Anim Health Prod ; 55(2): 91, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808565

RESUMO

Babesia microti (Apicomplexa: Piroplasmida) causes a medically important tick-borne zoonotic protozoan disease. Egyptian camels are susceptible to Babesia infection; however, just a few cases have been documented. This study aimed to identify Babesia species, specifically Babesia microti, and their genetic diversity in dromedary camels in Egypt and associated hard ticks. Blood and hard tick samples were taken from 133 infested dromedary camels slaughtered in Cairo and Giza abattoirs. The study was conducted from February to November 2021. The 18S rRNA gene was amplified by polymerase chain reaction (PCR) to identify Babesia species. Nested PCR targeting the ß-tubulin gene was used to identify B. microti. The PCR results were confirmed by DNA sequencing. Phylogenetic analysis based on the ß-tubulin gene was used to detect and genotype B. microti. Three tick genera were identified in infested camels (Hyalomma, Rhipicephalus, and Amblyomma). Babesia species were detected in 3 out of 133 blood samples (2.3%), while Babesia spp. were not detected in hard ticks by using the 18S rRNA gene. B. microti was identified in 9 out of 133 blood samples (6.8%) and isolated from Rhipicephalus annulatus and Amblyomma cohaerens by the ß-tubulin gene. The phylogenetic analysis of the ß-tubulin gene revealed that USA-type B. microti was prevalent in Egyptian camels. The results of this study suggested that the Egyptian camels may be infected with Babesia spp. and the zoonotic B. microti strains, which pose a potential risk to public health.


Assuntos
Babesia microti , Babesia , Babesiose , Ixodidae , Rhipicephalus , Animais , Babesia microti/genética , Camelus/genética , Egito , Filogenia , Tubulina (Proteína)/genética , Babesia/genética , Ixodidae/genética , RNA Ribossômico 18S/genética
3.
Vet Sci ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851446

RESUMO

Tick-borne diseases (TBDs) are emerging and re-emerging infections that have a worldwide impact on human and animal health. Lyme borreliosis (LB) is a severe zoonotic disease caused by the spirochete Borrelia burgdorferi sensu lato (s.l.) transmitted to humans by the bite of infected Ixodes ticks. Borrelia miyamotoi is a spirochete that causes relapsing fever (RF) and is genetically related to Borrelia burgdorferi s.l. However, there have been no reports of B. miyamotoi in Egypt, and the data on LB in camels is scarce. Thus, the present study was conducted to screen and genetically identify Borrelia spp. and B. miyamotoi in Egyptian camels and associated ticks using polymerase chain reaction (PCR). METHODS: A total of 133 blood samples and 1596 adult hard ticks were collected from Camelus dromedaries at Cairo and Giza slaughterhouses in Egypt. Tick species were identified by examining their morphology and sequencing the cytochrome C oxidase subunit 1 (cox1) gene. Borrelia spp. was detected using nested PCR on the IGS (16S-23S) gene, and positive samples were genotyped using 16S rRNA and glpQ spp. genes specific for Borrelia burgdorferi and Borrelia miyamotoi, respectively. The positive PCR products were sequenced and analyzed by phylogenetic tree. RESULTS: Analysis of the cox1 gene sequence revealed that the adult ticks belonged to three genera; Hyalomma (H), Amblyomma (Am), and Rhipicephalus (R), as well as 12 species, including H. dromedarii, H. marginatum, H. excavatum, H. anatolicum, R. annulatus, R. pulchellus, Am. testudinarium, Am. hebraeum, Am. lipidium, Am. variegatum, Am. cohaerens and Am. gemma. Borrelia spp. was found in 8.3% (11/133) of the camel blood samples and 1.3% (21/1596) of the ticks, respectively. Sequencing of the IGS (16S-23S) gene found that B. afzelii, detected from H. dromedarii and H. marginatum, and B. crocidurae, which belongs to the RF group, was detected from one blood sample. B. burgdorferi and B. miyamotoi were discovered in the blood samples and tick species. Phylogenetic analysis of the glpQ gene showed that the B. miyamotoi in this study was of the Asian and European types. CONCLUSIONS: These results suggest that the camels can be infected by Lyme borrelia and other Borrelia bacteria species. This study also provides the first insight into the presence of Borrelia miyamotoi and B. afzelii DNA in camels and associated ticks in Egypt.

4.
Vet World ; 15(5): 1191-1196, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35765488

RESUMO

Background and Aim: Fresh produce farms represents a major source of concern since they are becoming increasingly antibiotic resistant. This study aimed to investigate the occurrence of carbapenemase and extended-spectrum-beta-lactamases (ESBL) - producing genes in Klebsiella pneumoniae isolated from fresh produce farms in Egypt, irrigation water, and people working in these fields. Materials and Methods: One hundred tomatoes from typical farms were collected in plastic bags. The study also included 20 surface-water samples from different irrigation watersheds in fresh produce farms, as well as 50 feces samples from farmworkers. Suspected K. pneumoniae was grown on Eosin Methylene Blue agar for 24 h before being biochemically identified using the RapID ONE test. PCR was used to detect carbapenemase (blaKPC, blaOXA-48, and blaNDM) and ESBL (blaSHV, blaTEM, and blaCTX) expressing genes on isolates. Results: K. pneumoniae was identified in 30% of water and 10% of worker samples, while only one isolate was found in tomato samples. One of the six irrigation water isolates tested positive for carbapenem-resistant NDM. In contrast, two isolates tested positive for ESBL determinants, one of which was blSHV and the other having both blaSHV and blaTEM genes. Two of the five K. pneumoniae isolates from farmworkers were positive for blaNDM, with one isolate also testing positive for blaSHV and blaTEM. The blaOXA-48 gene was also discovered in the carbapenem-resistant K. pneumoniae tomato isolate used in this study. Conclusion: Carbapenemase- and ESBL-producing K. pneumoniae were found in fresh produce farms, implying that these resistance genes were being passed down to Egyptian consumers.

5.
Pathogens ; 10(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578663

RESUMO

Cholera is a negative public health event caused by Vibrio cholerae. Although V. cholerae is abundant in natural environments, its pattern and transmission between different niches remain puzzling and interrelated. Our study aimed to investigate the occurrence of nonpathogenic V. cholerae in the natural environment during endemicity periods. It also aimed to highlight the role of molecular ecoepidemiology in mapping the routes of spread, transmission, and prevention of possible future cholera outbreaks. V. cholerae was detected in different aquatic environments, waterfowl, and poultry farms located along the length of the Nile River in Giza, Cairo, and Delta provinces, Egypt. After polymerase chain reaction amplification of the specific target outer membrane gene (Omp W) of suspected isolates, we performed sequence analysis, eventually using phylogenetic tree analysis to illustrate the possible epidemiological relationships between different sequences. Data revealed a significant variation in the physicochemical conditions of the examined Nile districts related to temporal, spatial, and anthropogenic activities. Moreover, data showed an evident association between V. cholerae and the clinically diseased Synodontis schall fish. We found that the environmental distress triggered by the salinity shift and elevated temperature in the Middle Delta of the Nile River affects the pathogenesis of V. cholerae, in addition to the characteristics of fish host inhabiting the Rosetta Branch at Kafr El-Zayat, El-Gharbia province, Egypt. In addition, we noted a significant relationship between V. cholerae and poultry sources that feed on the Nile dikes close to the examined districts. Sequence analysis revealed clustering of the waterfowl and broiler chicken isolates with human and aquatic isolated sequences retrieved from the GenBank databases. From the obtained data, we hypothesized that waterfowl act as a potential vector for the intermediate transmission of cholera. Therefore, continuous monitoring of Nile water quality and mitigation of Nile River pollution, in addition to following good managemental practices (GMPs), general hygienic guidelines, and biosecurity in the field of animal production and industry, might be the way to break this cyclic transmission between human, aquatic, and animal sectors.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31827778

RESUMO

Background: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. Methods: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. Result: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. Conclusion: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked.


Assuntos
Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Aves/microbiologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Animais , Animais Selvagens/microbiologia , Bactérias/classificação , Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Humanos , Klebsiella/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Saúde Pública , Microbiologia da Água
7.
Vet World ; 12(7): 1033-1038, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31528029

RESUMO

BACKGROUND AND AIM: Salmonellosis is one of the most common foodborne bacterial diseases in the world. The great majority of Salmonella infections in humans are foodborne with Salmonella enterica and Salmonella Typhimurium accounting for a major part of the problem. The objective of this study was to investigate the presence of invA gene in strains of Salmonellae isolated from eggs and diarrheal swabs from human cases. In addition, the relationship between invA gene nucleotide sequences from different sources (human stool and egg samples) have been studied through phylogenetic tree. MATERIALS AND METHODS: One hundred and seventy eggs (eggshell and its contents) and 160 stool swabs samples were collected from four poultry farms and medical hospital in Giza Governorate. RESULTS: The study reported the presence of two Salmonella strains in eggshell surface with an overall isolation rate of 1.2 and 0% of the egg content. Salmonella Enteritidis and Salmonella Typhimurium were isolated from eggshell surface with an incidence of 50% for each strain. Six salmonella strains were isolated from human stool with an incidence of 3.75%; the isolated strains are S. Typhimurium, S. Enteritidis, Salmonella Virchow, Salmonella Haifa, and Salmonella Kentucky with an incidence of 33.3%, 16.6%, 16.6%, 16.6%, and 16.6%, respectively. Among eight Salmonella strains, invA gene was detected with percentage of 50%. The phylogenetic analysis of the sequences invA gene, from two isolates included in this study and five isolates retrieved from GenBank showed that sequence from human, layer hens, egg, and water in the same clusters. CONCLUSION: Close relation between drinking contaminated water and layer hens and contaminated water is one such source.

8.
Ital J Food Saf ; 8(4): 8525, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31897402

RESUMO

Salmonellosis is a considerable public health problem worldwide, with high economic importance in developed countries. The main purpose of this study was to determine the prevalence of Salmonella infection and antibiogram analysis of isolated strains in a cross-sectional study in Egypt 2016-2017. The study investigated twenty-eight Salmonella isolates from different areas in Egypt and different types of samples, such as human stool (9.3%), Egyptian cattle egrets and storks (28.5%) and grilled chicken from electric grills (36.6%). No isolates were detected from grilled chicken from charcoal grills or drinking water. The main Salmonella serotype detected in the isolates was S. typhimurium (86.5%). Molecular characterization of the invA gene by PCR was carried out and then confirmed by sequencing, and the results were submitted to GenBank. Antibiogram analysis of Egyptian isolates carried out on 9 antimicrobial discs reported that the routine regimes of treatment were not yet effective for recent new Salmonella generations in 2016-2017. The new isolates could be treated with levofloxacin, cefaperazone/sulbactam, chloramphenicol, imipenem or meropenem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA