Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 096601, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489634

RESUMO

In this study, we performed high-magnetic-field magnetization, dielectric, and ultrasound measurements on an organic salt showing a ferroelectric spin-Peierls (FSP) state, which is in close proximity to a quantum critical point. In contrast to the sparsely distributed gaslike spin solitons typically observed in conventional spin-Peierls (SP) states, the FSP state exhibits dense liquidlike spin solitons resulting from strong quantum fluctuations, even at low fields. Nevertheless, akin to conventional SP systems, a magnetic-field-induced transition is observed in the FSP state. In conventional high-field SP states, an emergent wave vector results in the formation of a spin-soliton lattice. However, in the present high-field FSP state, the strong quantum fluctuations preclude the formation of such a soliton lattice, causing the dense solitons to remain in a quantum-mechanically melted state. This observation implies the realization of a quantum liquid-liquid transition of topological particles carrying spin and charge in a ferroelectric insulator.

2.
Nat Commun ; 14(1): 8240, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086819

RESUMO

The anomalous Hall effect (AHE) that emerges in antiferromagnetic metals shows intriguing physics and offers numerous potential applications. Magnets with a rutile crystal structure have recently received attention as a possible platform for a collinear-antiferromagnetism-induced AHE. RuO2 is a prototypical candidate material, however the AHE is prohibited at zero field by symmetry because of the high-symmetry [001] direction of the Néel vector at the ground state. Here, we show AHE at zero field in Cr-doped rutile, Ru0.8Cr0.2O2. The magnetization, transport and density functional theory calculations indicate that appropriate doping of Cr at Ru sites reconstructs the collinear antiferromagnetism in RuO2, resulting in a rotation of the Néel vector from [001] to [110] while maintaining a collinear antiferromagnetic state. The AHE with vanishing net moment in the Ru0.8Cr0.2O2 exhibits an orientation dependence consistent with the [110]-oriented Hall vector. These results demonstrate that material engineering by doping is a useful approach to manipulate AHE in antiferromagnetic metals.

3.
Sci Rep ; 13(1): 6876, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106004

RESUMO

In some materials exhibiting field-induced first-order transitions (FOTs), the equilibrium phase-transition line is hidden by the hysteresis region associated with the FOT. In general, phase diagrams form the basis for the study of material science, and the profiles of phase-transition lines separating different thermodynamic phases include comprehensive information about thermodynamic quantities, such as latent heat. However, in a field-induced FOT, the equilibrium phase-transition line cannot be precisely determined from measurements of resistivity, magnetization, etc, especially when the transition is accompanied by large hysteresis. Here, we demonstrate a thermodynamics-based method for determining the hidden equilibrium FOT line in a material exhibiting a field-induced FOT. This method is verified for the field-induced FOT between antiferromagnetic and ferrimagnetic states in magneto-electric compounds ([Formula: see text]. The equilibrium FOT line determined based on the Clausius-Clapeyron equation exhibits a reasonable profile in terms of the third law of thermodynamics, and it shows marked differences from the midpoints of the hysteresis region. Our findings highlight that for a field-induced FOT exhibiting large hysteresis, care should be taken for referring to the hysteresis midpoint line when discussing field-induced latent heat or magnetocaloric effects.

4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389677

RESUMO

Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.

5.
Nat Commun ; 12(1): 5079, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426575

RESUMO

Thermal-current induced electron and spin dynamics in solids -dubbed "caloritronics"- have generated widespread interest in both fundamental physics and spintronics applications. Here, we examine the dynamics of nanometric topological spin textures, skyrmions driven by a temperature gradient ∇T or heat flow, that are evaluated through in-situ real-space observations in an insulating helimagnet Cu2OSeO3. We observe increases of the skyrmion velocity and the Hall angle with increasing ∇T above a critical value of ~ 13 mK/mm, which is two orders of magnitude lower than the ∇T required to drive ferromagnetic domain walls. A comparable magnitude of ∇T is also observed to move the domain walls between a skyrmion domain and the non-topological conical-spin domain from cold to hot regions. Our results demonstrate the efficient manipulation of skyrmions by temperature gradients, a promising step towards energy-efficient "green" spintronics.

6.
Nat Mater ; 20(3): 335-340, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33495630

RESUMO

Topological spin textures have attracted much attention both for fundamental physics and spintronics applications. Among them, antiskyrmions possess a unique spin configuration with Bloch-type and Néel-type domain walls owing to anisotropic Dzyaloshinskii-Moriya interaction in the non-centrosymmetric crystal structure. However, antiskyrmions have thus far only been observed in a few Heusler compounds with D2d symmetry. Here we report a new material, Fe1.9Ni0.9Pd0.2P, in a different symmetry class (S4), in which antiskyrmions exist over a wide temperature range that includes room temperature, and transform into skyrmions on changing magnetic field and lamella thickness. The periodicity of magnetic textures greatly depends on the crystal thickness, and domains with anisotropic sawtooth fractals were observed at the surface of thick crystals and attributed to the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction as governed by crystal symmetry. Our findings provide an arena in which to study antiskyrmions, and should stimulate further research on topological spin textures and their applications.

7.
Nature ; 586(7828): 232-236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029000

RESUMO

An inductor, one of the most fundamental circuit elements in modern electronic devices, generates a voltage proportional to the time derivative of the input current1. Conventional inductors typically consist of a helical coil and induce a voltage as a counteraction to time-varying magnetic flux penetrating the coil, following Faraday's law of electromagnetic induction. The magnitude of this conventional inductance is proportional to the volume of the inductor's coil, which hinders the miniaturization of inductors2. Here, we demonstrate an inductance of quantum-mechanical origin3, generated by the emergent electric field induced by current-driven dynamics of spin helices in a magnet. In microscale rectangular magnetic devices with nanoscale spin helices, we observe a typical inductance as large as -400 nanohenry, comparable in magnitude to that of a commercial inductor, but in a volume about a million times smaller. The observed inductance is enhanced by nonlinearity in current and shows non-monotonous frequency dependence, both of which result from the current-driven dynamics of the spin-helix structures. The magnitude of the inductance rapidly increases with decreasing device cross-section, in contrast to conventional inductors. Our findings may pave the way to microscale, simple-shaped inductors based on emergent electromagnetism related to the quantum-mechanical Berry phase.

8.
Sci Rep ; 10(1): 10864, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616739

RESUMO

Ferroelectricity in ultrathin films is destabilized by depolarization field, which leads to the reduction of spontaneous polarization or domain formation. Here, thickness dependence of remnant polarization in PbTiO3 films is electrically revealed down to 2.6 nm by controlling the polarization direction with employing an electric double layer gating technique to suppress leakage current in ultrathin films. The remnant polarization for a 17 nm-thick film is similar to bulk value ~ 60 µC cm-2 and reduces to ~ 20 µC cm-2 for a 2.6 nm-thick film, whereas robust ferroelectricity is clearly observed in such ultrathin films. In-situ X-ray diffraction measurements under an external electric field reveal that the reduced tetragonality in ultrathin films is mostly recovered by cancelling out the depolarization field. Electric double layer gating technique is an excellent way for exploring physical properties in ultrathin ferroelectric films.

9.
J Am Chem Soc ; 141(25): 10033-10038, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31140278

RESUMO

Recently, we discovered a modular synthetic approach for constructing core-shell columnar liquid crystals (LCs) by supramolecular polymerization in LC media. In the present work, we successfully confirmed that our modular synthetic approach has the potential to be widely extended to the development of multifunctional columnar LCs. Herein, we constructed the first core-shell columnar LC that was proved to be orientable by both electric and magnetic fields by the supramolecular polymerization of NODiskNH* in a nematic LC medium of 4-cyano-4'-pentyloxybiphenyl (5OCB). NODiskNH* is a chiral benzenetricarboxamide derivative bearing 2,2,6,6-tetramethylpiperidine 1-oxyl termini, which is known to form a helical supramolecular polymer via a triple hydrogen-bonding array. NODiskNH* alone formed a hydrogen-bonded liquid phase without any long-range structural ordering. However, a nematic LC medium of 5OCB, when mixed with NODiskNH* at a molar ratio of 1:3, underwent a "structural order-increasing" mesophase transition, affording an optically active single LC phase with a hexagonally arranged core-shell columnar geometry in a temperature range from 113 to 51 °C. Unprecedentedly, this core-shell columnar LC can orient its columns both electrically and magnetically, resulting in unidirectional columnar ordering.

10.
Sci Adv ; 4(10): eaau3489, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30310870

RESUMO

Exploration for superconductivity is one of the research frontiers in condensed matter physics. In strongly correlated electron systems, the emergence of superconductivity is often inhibited by the formation of a thermodynamically more stable magnetic/charge order. Thus, to develop the superconductivity as the thermodynamically most stable state, the free-energy balance between the superconductivity and the competing order has been controlled mainly by changing thermodynamic parameters, such as the physical/chemical pressure and carrier density. However, such a thermodynamic approach may not be the only way to materialize the superconductivity. We present a new kinetic approach to avoiding the competing order and thereby inducing persistent superconductivity. In the transition-metal dichalcogenide IrTe2 as an example, by using current pulse-based rapid cooling of up to ~107 K s-1, we successfully kinetically avoid a first-order phase transition to a competing charge order and uncover metastable superconductivity hidden behind. Because the electronic states at low temperatures depend on the history of thermal quenching, electric pulse applications enable nonvolatile and reversible switching of the metastable superconductivity, a unique advantage of the kinetic approach. Thus, our findings provide a new approach to developing and manipulating superconductivity beyond the framework of thermodynamics.

11.
Sci Adv ; 4(8): eaat1115, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30105304

RESUMO

Dynamics of string-like objects is an important issue in a broad range of physical systems, including vortex lines in superconductors, viscoelastic polymers, and superstrings in elementary particle physics. In noncentrosymmetric magnets, string forms of magnetic skyrmions are present as topological spin objects, and their current-induced dynamics has recently attracted intense interest. We show in the chiral magnet MnSi that the current-induced deformation dynamics of skyrmion strings results in transport response associated with the real-space Berry phase. Prominent nonlinear Hall signals emerge above the threshold current only in the skyrmion phase. We clarify the mechanism for these nonlinear Hall signals by adopting spin density wave picture to describe the moving skyrmion lattice; deformation of skyrmion strings occurs in an asymmetric manner due to the Dzyaloshinskii-Moriya interaction, which leads to the nonreciprocal nonlinear Hall response originating from an emergent electromagnetic field. This finding reveals the dynamical nature of string-like objects and consequent transport outcomes in noncentrosymmetric systems.

12.
Nat Commun ; 8(1): 1332, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109474

RESUMO

In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10-1000 µm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3-5 × 106 A m-2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.

13.
Sci Adv ; 3(6): e1602562, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630906

RESUMO

Magnetic skyrmions exhibit particle-like properties owing to the topology of their swirling spin texture, providing opportunities to study crystallization of topological particles. However, they mostly end up with a triangular lattice, and thus, the packing degree of freedom in the skyrmion particles has been overlooked so far. We report a structural transition of the skyrmion lattice in MnSi. By use of small-angle neutron scattering, we explore a metastable skyrmion state spreading over a wide temperature and magnetic field region, after thermal quenching. The quenched skyrmions undergo a triangular-to-square lattice transition with decreasing magnetic field at low temperatures. Our study suggests that various skyrmion lattices can emerge at low temperatures, where the skyrmions exhibit distinct topological nature and high sensitivity to the local magnetic anisotropy arising from the underlying chemical lattice.

14.
Adv Mater ; 29(21)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370455

RESUMO

A magnetic skyrmion is a nanometer-scale magnetic vortex carrying an integer topological charge. Skyrmions show a promise for potential application in low-power-consumption and high-density memory devices. To promote their use in applications, it is attempted to control the existence of skyrmions using low electric currents at room temperature (RT). This study presents real-space observations for the current-induced formation and annihilation of a skyrmion lattice (SkL) as well as isolated skyrmions in a microdevice composed of a thin chiral magnet Co8 Zn9 Mn3 with a Curie temperature, TC ≈ 325 K, above RT. It is found that the critical current for the manipulation of Bloch-type skyrmions is on the order of 108 A m-2 , approximately three orders of magnitude lower than that needed for the creation and drive of ferromagnetic (FM) domain walls in thin FM films. The in situ real-space imaging also demonstrates the dynamical topological transition from a helical or conical structure to a SkL induced by the flow of DC current, thus paving the way for the electrical control of magnetic skyrmions.

15.
Adv Mater ; 29(25)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27327878

RESUMO

Electrons in condensed matter have internal degrees of freedom, such as charge, spin, and orbital, leading to various forms of ordered states through phase transitions. However, in individual materials, a charge/spin/orbital ordered state of the lowest temperature is normally uniquely determined in terms of the lowest-energy state, i.e., the ground state. Here, recent results are summarized showing that under rapid cooling, this principle does not necessarily hold, and thus, the cooling rate is a control parameter of the lowest-temperature state beyond the framework of the thermoequilibrium phase diagram. Although the cooling rate utilized in low-temperature experiments is typically 2 × 10-3 to 4 × 10-1 K s-1 , the use of optical/electronic pulses facilitates rapid cooling, such as 102 -103 K s-1 . Such an unconventionally high cooling rate allows some systems to kinetically avoid a first-order phase transition, resulting in a quenched charge/spin state that differs from the ground state. It is also demonstrated that quenched states can be exploited as a non-volatile state variable when designing phase-change memory functions. The present findings suggest that rapid cooling is useful for exploring and controlling the metastable electronic/magnetic state, which is potentially hidden behind the ground state.

16.
Sci Adv ; 2(7): e1600304, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27419236

RESUMO

Electron transport coupled with magnetism has attracted attention over the years. Among them, recently discovered is topological Hall effect (THE), originating from scalar spin chirality, that is, the solid angle subtended by the spins. THE is found to be a promising tool for probing the Dzyaloshinskii-Moriya (DM) interaction and consequent magnetic skyrmions. This interaction arises from broken inversion symmetry and hence can be artificially introduced at interface; this concept is lately verified in metal multilayers. However, there are few attempts to investigate such DM interaction at interface through electron transport. We clarified how the transport properties couple with interface DM interaction by fabricating the epitaxial oxide interface. We observed THE in epitaxial bilayers consisting of ferromagnetic SrRuO3 and paramagnetic SrIrO3 over a wide region of both temperature and magnetic field. The magnitude of THE rapidly decreases with the thickness of SrRuO3, suggesting that the interface DM interaction plays a significant role. Such interaction is expected to realize a 10-nm-sized Néel-type magnetic skyrmion. The present results established that the high-quality oxide interface enables us to tune the effective DM interaction; this can be a step toward future topological electronics.


Assuntos
Imãs , Óxidos/química , Compostos de Rutênio/química , Estrôncio/química , Transporte de Elétrons , Campos Magnéticos , Microscopia Eletrônica de Transmissão e Varredura , Temperatura
17.
Nat Commun ; 7: 10675, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26880041

RESUMO

Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

18.
Adv Mater ; 27(41): 6475-81, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26419689

RESUMO

The fabrication of single-crystalline thin-film arrays for an organic ferroelectric small molecule is achieved by a simple solution process without additional thermal annealing. Based on a cooperative proton tautomerism through a hydrogen-bonding network, films show the polarity switching with an operating voltage of less than 5 V at room temperature. This approach provides a low-cost and eco-friendly fabrication of ferroelectric devices.

19.
Nat Commun ; 6: 7469, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076656

RESUMO

Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition.

20.
Chemistry ; 20(52): 17515-22, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363720

RESUMO

Three polymorphic forms of 6,6'-dimethyl-2,2'-bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature-dependent permittivity, differential scanning calorimetry, and X-ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α-form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base-type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti-polar structure (space group, P21/c) at 378 K. The non-ferroelectric ß- and γ-form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen-bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase-transition temperature (TC ) and hydrogen-bond length () was observed, and was attributed to the potential barrier height for proton off-centering or order/disorder phenomena. The optimized spontaneous polarization (Ps ) agreed well with the results of the first-principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing . These data consistently demonstrated that stretching is a promising way to enhance the polarization performance and thermal stability of hydrogen-bonded organic ferroelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA