Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 305, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904133

RESUMO

BACKGROUND: Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS: Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS: Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION: Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.


Assuntos
Esfingomielina Fosfodiesterase , Esfingomielinas , Camundongos , Animais , Humanos , Esfingomielina Fosfodiesterase/metabolismo , Anexina A5 , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilserinas , Ceramidas/metabolismo , Células Ganglionares da Retina/metabolismo
2.
Transl Vis Sci Technol ; 12(4): 1, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010860

RESUMO

Purpose: Axons depend on long-range transport of proteins and organelles which increases susceptibility to metabolic stress in disease. The axon initial segment (AIS) is particularly vulnerable due to the high bioenergetic demand of action potential generation. Here, we prepared retinal ganglion cells derived from human embryonic stem cells (hRGCs) to probe how axonal stress alters AIS morphology. Methods: hRGCs were cultured on coverslips or microfluidic platforms. We assayed AIS specification and morphology by immunolabeling against ankyrin G (ankG), an axon-specific protein, and postsynaptic density 95 (PSD-95), a dendrite-specific protein. Using microfluidic platforms that enable fluidic isolation, we added colchicine to the axon compartment to lesion axons. We verified axonopathy by measuring the anterograde axon transport of cholera toxin subunit B and immunolabeling against cleaved caspase 3 (CC3) and phosphorylated neurofilament H (SMI-34). We determined the influence of axon injury on AIS morphology by immunolabeling samples against ankG and measuring AIS distance from soma and length. Results: Based on measurements of ankG and PSD-95 immunolabeling, microfluidic platforms promote the formation and separation of distinct somatic-dendritic versus axonal compartments in hRGCs compared to coverslip cultures. Chemical lesioning of axons by colchicine reduced hRGC anterograde axon transport, increased varicosity density, and enhanced expression of CC3 and SMI-34. Interestingly, we found that colchicine selectively affected hRGCs with axon-carrying dendrites by reducing AIS distance from somas and increasing length, thus suggesting reduced capacity to maintain excitability. Conclusions: Thus, microfluidic platforms promote polarized hRGCs that enable modeling of axonopathy. Translational Relevance: Microfluidic platforms may be used to assay compartmentalized degeneration that occurs during glaucoma.


Assuntos
Microfluídica , Células Ganglionares da Retina , Humanos , Axônios/metabolismo , Potenciais de Ação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...