Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Intern Med ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462514

RESUMO

A 35-year-old man with fever and diarrhea visited our hospital because of white string-like fecal excretion. Based on a morphological examination of the excreted object, a Diphyllobothrium infection was suspected. Additionally, Gram staining of a fecal sample revealed Campylobacter infection. After the intraduodenal administration of meglumine/diatrizoate sodium, the tapeworm was excreted. A polymerase chain reaction-based DNA sequence analysis demonstrated that the tapeworm excreted in this case was Diphyllobothrium nihonkaiensis. This report presents a rare case of coinfection with Diphyllobothrium nihonkaiensis and Campylobacter jejuni. Therefore, it is important to consider the coexistence of other intestinal infections when diagnosing parasitic infections in patients with fever.

2.
Int Immunol ; 36(5): 241-256, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38153198

RESUMO

Multiple sclerosis (MS) is an incurable chronic autoimmune disease affecting the central nervous system (CNS). Although IL-17-producing helper T (Th17) cells are thought to be one of the exacerbating factors in MS, the underlying pathogenic mechanism is incompletely understood. TNF receptor-associated factor 6 (TRAF6) deficient T cells exhibited enhanced Th17 cell differentiation, however, the physiological relevance of TRAF6 in T cells remains unknown. Here, we induced experimental autoimmune encephalomyelitis (EAE) in T cell-specific TRAF6 deficient (TRAF6ΔT) mice to investigate the role of TRAF6 in T cells during the course of MS using an EAE model. Although Th17 cell differentiation was enhanced in TRAF6ΔT mice, mutant mice were resistant to EAE. In contrast, TRAF6 loss did not affect regulatory T-cell differentiation. Consistent with the severity of EAE, a small number of infiltrating T cells and a small area of demyelination were observed in the CNS of TRAF6ΔT mice. Moreover, myelin oligodendrocyte glycoprotein-induced IL-17 production in TRAF6-deficient T cells was significantly suppressed. We further confirmed lower levels of CD69 and granulocyte-macrophage colony-stimulating factor in Th17 cells of TRAF6ΔT mice than in wild-type mice. In contrast, the expression of IL-10 and cytotoxic T-lymphocyte-associated protein 4 in T cells was significantly elevated in the absence of TRAF6 because of enhanced T-cell receptor signaling. Collectively, TRAF6 signaling in T cells contributes to the pathogenesis of EAE by regulating the pathogenicity and autoantigen reactivity of Th17 cells.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Células Th17 , Fator 6 Associado a Receptor de TNF/metabolismo
3.
Biochem Biophys Res Commun ; 669: 103-112, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269592

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.


Assuntos
Citrobacter rodentium , Colite , Animais , Camundongos , Citrobacter rodentium/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th17 , Colite/patologia , Transdução de Sinais , Mucosa Intestinal/metabolismo , Colo/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos C57BL , Células Th1/metabolismo
4.
Genes Cells ; 28(4): 267-276, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641236

RESUMO

Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Células Th17/metabolismo , Células Th17/patologia , Dextranos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Colite/induzido quimicamente , Colite/genética , Quimiocinas/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores CCR6/genética , Receptores CCR2/genética
5.
Biochem Biophys Res Commun ; 641: 123-131, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36527746

RESUMO

Multiple sclerosis is an autoimmune disease in which the immune system attacks the nerve myelin sheath. The balance between pathogenic Th17 cells and regulatory Treg cells, both of which express the chemokine receptor CCR6 is critical for determining disease activity. It has been postulated that CCL20, the cognate ligand of CCR6, produced by the blood-brain barrier attracts these immune cells to the central nervous system (CNS). However, the pathological phenotypes of the experimental model of multiple sclerosis in CCR6-knockout (KO) mice are inconclusive, while this has not been addressed in CCL20-KO mice. To address this, we generated CCL20-KO and CCR6-KO mice using the CRISPR/Cas9 system. Clinical phenotypes of experimental autoimmune encephalomyelitis (EAE) in the chronic phase were slightly exacerbated in both mutant mice relative to those in wild-type (WT) mice. Inflammatory cell infiltration and demyelination in the CNS were similar in the KO and WT mice. CNS CD4+ T cell counts were the same for mutant and WT mice. The mutant and WT mice did not differ significantly in the proportions of Th17 and Treg cells in the CNS, or in IL-17 and TGF-ß mRNA expression in the CNS. These findings suggest that CCL20/CCR6-mediated cell migration is not necessarily required for the onset of EAE, and may be compensated for by other chemokine signals.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Receptores CCR6/genética , Receptores CCR6/metabolismo
6.
Biochem Biophys Res Commun ; 613: 26-33, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526485

RESUMO

CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ helper T (Th) cells play a critical role in protective immune responses to tumor cells. Particularly, Th9 cells exert anti-tumor activity by producing IL-9. TNF receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates the signals from both the TNFR superfamily and Toll-like receptors (TLRs). We have previously reported that T cell-specific TRAF6-deficent (TRAF6ΔT) mice spontaneously developed systemic inflammatory diseases. However, the physiological role of TRAF6 in T cells in controlling anti-tumor immune responses remains largely unclear. Here, we found that tumor formation of syngeneic colon cancer cells inoculated in TRAF6ΔT mice was accelerated compared to that in control mice. Although TRAF6-deficient naïve T cells showed enhanced differentiation of Th9 cells in vitro, these T cells produced lower amounts of IL-9 in response to a specific antigen. Moreover, CD4+ tumor-infiltrating lymphocytes (TILs) in tumor-bearing TRAF6ΔT mice expressed lower levels of IL-9 than those in WT mice. Importantly, administration of recombinant IL-9 (rIL-9) strongly suppressed tumor progression in TRAF6ΔT mice. Furthermore, expression levels of the T-box transcription factor Eomesodermin (Eomes) and its target molecules IFN-γ, granzyme B and perforin, as well as cytotoxic activity, were reduced in TRAF6-deficient CD8+ T cells in vitro. TRAF6-deficient T cells were found to express significantly increased levels of immune checkpoint molecules, CTLA-4 and PD-1 on the cell surface. These results demonstrate that the TRAF6 signaling pathway in T cells regulates anti-tumor immunity through the activation of tumor specific Th9 cells and CTLs in a tumor microenvironment.


Assuntos
Linfócitos T Citotóxicos , Fator 6 Associado a Receptor de TNF , Animais , Interleucina-9/imunologia , Interleucina-9/farmacologia , Camundongos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fator 6 Associado a Receptor de TNF/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...