Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1551, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005857

RESUMO

We have previously reported that transient knock-down of ATPase inhibitory factor 1 (IF1) by siRNA upregulates ATP levels and subsequently augments insulin secretion in model pancreatic ß-cells INS-1E. Here we investigated how long-term IF1-overexpression impacts pancreatic ß-cell bioenergetics and insulin secretion. We generated INS-1E cell line stably overexpressing native IF1. We revealed that IF1 overexpression leads to a substantial decrease in ATP levels and reduced glucose-stimulated insulin secretion. A decrease in total cellular ATP content was also reflected in decreased free ATP cytosolic and mitochondrial levels, as monitored with ATeam biosensor. Consistently, cellular respiration of IF1-overexpressing cells was decreased. 3D structured illumination microscopy (SIM) revealed a higher amount of insulin granules with higher volume in IF1-overexpressing cells. Similar effects occurred when cells were incubated at low glucose concentrations. Noteworthy, activation of PKA by dibutyryl cAMP entirely abolished the inhibitory effect of IF1 overexpression on ATP production and insulin secretion. Mitochondrial network morphology and cristae ultrastructure in INS-1E overexpressing IF1 remained mostly unchanged. Finally, we show that INS-1E cells decrease their IF1 protein levels relative to ATP synthase α-subunit in response to increased glucose. In conclusion, IF1 actively downregulates INS-1E cellular metabolism and reduces their ability to secrete insulin.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , CMP Cíclico/análogos & derivados , CMP Cíclico/metabolismo , Regulação para Baixo , Glucose/metabolismo , Proteínas/genética , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais , Regulação para Cima , Proteína Inibidora de ATPase
2.
Biochim Biophys Acta Bioenerg ; 1859(9): 829-844, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29727614

RESUMO

3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic ß-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-ß plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.


Assuntos
DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Membranas Mitocondriais/metabolismo , Animais , Células Cultivadas , Células Hep G2 , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Wistar
3.
FEBS Lett ; 592(6): 999-1009, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29380352

RESUMO

ATPase Inhibitory factor 1 (IF1) is an endogenous regulator of mitochondrial ATP synthase, which is involved in cellular metabolism. Although great progress has been made, biological roles of IF1 and molecular mechanisms of its action are still to be elucidated. Here, we show that IF1 is present in pancreatic ß-cells, bound to the ATP synthase also under normal physiological conditions. IF1 silencing in model pancreatic ß-cells (INS-1E) increases insulin secretion over a range of glucose concentrations. The left-shifted dose-response curve reveals excessive insulin secretion even under low glucose, corresponding to fasting conditions. A parallel increase in cellular respiration and ATP levels is observed. To conclude, our results indicate that IF1 is a negative regulator of insulin secretion involved in pancreatic ß-cell glucose sensing.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Consumo de Oxigênio/fisiologia , Proteínas/metabolismo , Animais , Linhagem Celular Tumoral , Células Secretoras de Insulina/citologia , Ratos , Ratos Wistar , Proteína Inibidora de ATPase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...