Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 47, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855050

RESUMO

BACKGROUND: NorQ, a member of the MoxR-class of AAA+ ATPases, and NorD, a protein containing a Von Willebrand Factor Type A (VWA) domain, are essential for non-heme iron (FeB) cofactor insertion into cytochrome c-dependent nitric oxide reductase (cNOR). cNOR catalyzes NO reduction, a key step of bacterial denitrification. This work aimed at elucidating the specific mechanism of NorQD-catalyzed FeB insertion, and the general mechanism of the MoxR/VWA interacting protein families. RESULTS: We show that NorQ-catalyzed ATP hydrolysis, an intact VWA domain in NorD, and specific surface carboxylates on cNOR are all features required for cNOR activation. Supported by BN-PAGE, low-resolution cryo-EM structures of NorQ and the NorQD complex show that NorQ forms a circular hexamer with a monomer of NorD binding both to the side and to the central pore of the NorQ ring. Guided by AlphaFold predictions, we assign the density that "plugs" the NorQ ring pore to the VWA domain of NorD with a protruding "finger" inserting through the pore and suggest this binding mode to be general for MoxR/VWA couples. CONCLUSIONS: Based on our results, we present a tentative model for the mechanism of NorQD-catalyzed cNOR remodeling and suggest many of its features to be applicable to the whole MoxR/VWA family.


Assuntos
Proteínas AAA , Paracoccus denitrificans , Chaperonas Moleculares , Noretindrona , Relação Estrutura-Atividade
2.
Biochemistry ; 60(4): 346-355, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464878

RESUMO

Efficiently carrying out the oxygen reduction reaction (ORR) is critical for many applications in biology and chemistry, such as bioenergetics and fuel cells, respectively. In biology, this reaction is carried out by large, transmembrane oxidases such as heme-copper oxidases (HCOs) and cytochrome bd oxidases. Common to these oxidases is the presence of a glutamate residue next to the active site, but its precise role in regulating the oxidase activity remains unclear. To gain insight into its role, we herein report that incorporation of glutamate next to a designed heme-copper center in two biosynthetic models of HCOs improves O2 binding affinity, facilitates protonation of reaction intermediates, and eliminates release of reactive oxygen species. High-resolution crystal structures of the models revealed extended, water-mediated hydrogen-bonding networks involving the glutamate. Electron paramagnetic resonance of the cryoreduced oxy-ferrous centers at cryogenic temperature followed by thermal annealing allowed observation of the key hydroperoxo intermediate that can be attributed to the hydrogen-bonding network. By demonstrating these important roles of glutamate in oxygen reduction biochemistry, this work offers deeper insights into its role in native oxidases, which may guide the design of more efficient artificial ORR enzymes or catalysts for applications such as fuel cells.


Assuntos
Cobre/metabolismo , Proteínas de Escherichia coli , Escherichia coli , Ácido Glutâmico , Heme , Engenharia Metabólica , Modelos Biológicos , Oxirredutases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Heme/genética , Heme/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
3.
FEBS Lett ; 593(12): 1351-1359, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31077353

RESUMO

A key step of denitrification, the reduction of toxic nitric oxide to nitrous oxide, is catalysed by cytochrome c-dependent NO reductase (cNOR). cNOR contains four redox-active cofactors: three hemes and a nonheme iron (FeB ). Heme b3 and FeB constitute the active site, but the specific mechanism of NO-binding events and reduction is under debate. Here, we used a recently constructed, fully folded and hemylated cNOR variant that lacks FeB to investigate the role of FeB during catalysis. We show that in the FeB -less cNOR, binding of both NO and O2 to heme b3 still occurs but further reduction is impaired, although to a lesser degree for O2 than for NO. Implications for the catalytic mechanisms of cNOR are discussed.


Assuntos
Heme/metabolismo , Oxirredutases/metabolismo , Catálise , Domínio Catalítico , Cinética , Óxido Nítrico/metabolismo , Oxirredução , Oxigênio/metabolismo , Ligação Proteica
4.
Biochim Biophys Acta Bioenerg ; 1859(10): 1051-1058, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29874552

RESUMO

Bacterial NO reductases (NOR) catalyze the reduction of NO into N2O, either as a step in denitrification or as a detoxification mechanism. cNOR from Paracoccus (P.) denitrificans is expressed from the norCBQDEF operon, but only the NorB and NorC proteins are found in the purified NOR complex. Here, we established a new purification method for the P. denitrificans cNOR via a His-tag using heterologous expression in E. coli. The His-tagged enzyme is both structurally and functionally very similar to non-tagged cNOR. We were also able to express and purify cNOR from the structural genes norCB only, in absence of the accessory genes norQDEF. The produced protein is a stable NorCB complex containing all hemes and it can bind gaseous ligands (CO) to heme b3, but it is catalytically inactive. We show that this deficient cNOR lacks the non-heme iron cofactor FeB. Mutational analysis of the nor gene cluster revealed that it is the norQ and norD genes that are essential to form functional cNOR. NorQ belongs to the family of MoxR P-loop AAA+ ATPases, which are in general considered to facilitate enzyme activation processes often involving metal insertion. Our data indicates that NorQ and NorD work together in order to facilitate non-heme Fe insertion. This is noteworthy since in many cases Fe cofactor binding occurs spontaneously. We further suggest a model for NorQ/D-facilitated metal insertion into cNOR.

5.
Biochim Biophys Acta Biomembr ; 1859(10): 1951-1961, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28668220

RESUMO

For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O2-binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O2, and found that the pKa of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed.


Assuntos
Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Oxirredutases/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Citocromos c/metabolismo , Detergentes/metabolismo , Transporte de Elétrons/fisiologia , Lipídeos/fisiologia , Micelas , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Proteolipídeos/metabolismo , Prótons
6.
Angew Chem Int Ed Engl ; 56(23): 6622-6626, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28470988

RESUMO

Heme-copper oxidase (HCO) is a class of respiratory enzymes that use a heme-copper center to catalyze O2 reduction to H2 O. While heme reduction potential (E°') of different HCO types has been found to vary >500 mV, its impact on HCO activity remains poorly understood. Here, we use a set of myoglobin-based functional HCO models to investigate the mechanism by which heme E°' modulates oxidase activity. Rapid stopped-flow kinetic measurements show that increasing heme E°' by ca. 210 mV results in increases in electron transfer (ET) rates by 30-fold, rate of O2 binding by 12-fold, O2 dissociation by 35-fold, while decreasing O2 affinity by 3-fold. Theoretical calculations reveal that E°' modulation has significant implications on electronic charge of both heme iron and O2 , resulting in increased O2 dissociation and reduced O2 affinity at high E°' values. Overall, this work suggests that fine-tuning E°' in HCOs and other heme enzymes can modulate their substrate affinity, ET rate and enzymatic activity.


Assuntos
Heme/metabolismo , Mioglobina/metabolismo , Oxirredutases/metabolismo , Domínio Catalítico , Transporte de Elétrons , Histidina/metabolismo , Modelos Biológicos , Mutagênese , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxigênio/metabolismo , Análise Espectral/métodos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...