Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
ZDM ; 55(1): 109-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36532825

RESUMO

The mathematical medium of data visualization and other data representations (DV) has served as a primary means of communicating about the COVID-19 crisis. DVs about the pandemic are highly visible across news journalism and include an increasingly innovative and diverse set of representational forms. These representational forms employ multimodal, interactive, and narrative elements, among others, that create new possibilities for data storytelling. Building on current efforts to expand the teaching and learning of data practices in K-12 mathematics education, we argue that innovative DVs create new opportunities for teaching and learning mathematics, particularly during times of crisis. We illustrate our argument using three examples of innovative DVs from news journalism. We discuss how these DVs could serve as complementary resources alongside conventional graphs to support students as they use mathematics and mathematical representations to make sense of crises such as the COVID-19 pandemic. Our commentary seeks to bring current trends in data representation to bear in mathematics education. Leveraging such trends offers artifacts useful for teaching and opens up space for elevating emotion and experience as important aspects of mathematics curricula.

2.
J Med Chem ; 64(20): 15334-15348, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34648707

RESUMO

Ricin toxin A subunit (RTA) is the catalytic subunit of ricin, which depurinates an adenine from the sarcin/ricin loop in eukaryotic ribosomes. There are no approved inhibitors against ricin. We used a new strategy to disrupt RTA-ribosome interactions by fragment screening using surface plasmon resonance. Here, using a structure-guided approach, we improved the affinity and inhibitory activity of small-molecular-weight lead compounds and obtained improved compounds with over an order of magnitude higher efficiency. Four advanced compounds were characterized by X-ray crystallography. They bind at the RTA-ribosome binding site as the original compound but in a distinctive manner. These inhibitors bind remotely from the catalytic site and cause local conformational changes with no alteration of the catalytic site geometry. Yet they inhibit depurination by ricin holotoxin and inhibit the cytotoxicity of ricin in mammalian cells. They are the first agents that protect against ricin holotoxin by acting directly on RTA.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ribossomos/efeitos dos fármacos , Ricina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Chlorocebus aethiops , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Ricina/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Células Vero
3.
Bioorg Med Chem Lett ; 32: 127661, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160023

RESUMO

We previously reported medicinal chemistry efforts that identified MK-5204, an orally efficacious ß-1,3-glucan synthesis inhibitor derived from the natural product enfumafungin. Further extensive optimization of the C2 triazole substituent identified 4-pyridyl as the preferred replacement for the carboxamide of MK-5204, leading to improvements in antifungal activity in the presence of serum, and increased oral exposure. Reoptimizing the aminoether at C3 in the presence of this newly discovered C2 substituent, confirmed that the (R) t-butyl, methyl aminoether of MK-5204 provided the best balance of these two key parameters, culminating in the discovery of ibrexafungerp, which is currently in phase III clinical trials. Ibrexafungerp displayed significantly improved oral efficacy in murine infection models, making it a superior candidate for clinical development as an oral treatment for Candida and Aspergillus infections.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Glicosídeos/química , Triterpenos/química , beta-Glucanas/metabolismo , Administração Oral , Animais , Antifúngicos/síntese química , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Candidíase/tratamento farmacológico , Modelos Animais de Doenças , Glicosídeos/farmacocinética , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Meia-Vida , Camundongos , Relação Estrutura-Atividade , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/uso terapêutico
4.
Bioorg Med Chem Lett ; 30(17): 127357, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738971

RESUMO

Our previously reported efforts to produce an orally active ß-1,3-glucan synthesis inhibitor through the semi-synthetic modification of enfumafungin focused on replacing the C2 acetoxy moiety with an aminotetrazole and the C3 glycoside with a N,N-dimethylaminoether moiety. This work details further optimization of the C2 heterocyclic substituent, which identified 3-carboxamide-1,2,4-triazole as a replacement for the aminotetrazole with comparable antifungal activity. Alkylation of either the carboxamidetriazole at C2 or the aminoether at C3 failed to significantly improve oral efficacy. However, replacement of the isopropyl alpha amino substituent with a t-butyl, improved oral exposure while maintaining antifungal activity. These two structural modifications produced MK-5204, which demonstrated broad spectrum activity against Candida species and robust oral efficacy in a murine model of disseminated Candidiasis without the N-dealkylation liability observed for the previous lead.


Assuntos
Antifúngicos/química , Triazóis/química , beta-Glucanas/metabolismo , Administração Oral , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Modelos Animais de Doenças , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Glicosídeos/química , Meia-Vida , Camundongos , Testes de Sensibilidade Microbiana , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/farmacologia , Triazóis/uso terapêutico , Triterpenos/química , beta-Glucanas/química
5.
ACS Infect Dis ; 6(7): 1894-1905, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32428396

RESUMO

Ricin toxin A subunit (RTA) removes an adenine from the universally conserved sarcin/ricin loop (SRL) on eukaryotic ribosomes, thereby inhibiting protein synthesis. No high affinity and selective small molecule therapeutic antidotes have been reported against ricin toxicity. RTA binds to the ribosomal P stalk to access the SRL. The interaction anchors RTA to the P protein C-termini at a well-defined hydrophobic pocket, which is on the opposite face relative to the active site. The RTA ribosome binding site has not been previously targeted by small molecule inhibitors. We used fragment screening with surface plasmon resonance to identify small molecular weight lead compounds that bind RTA and defined their interactions by crystallography. We identified five fragments, which bound RTA with mid-micromolar affinity. Three chemically distinct binding fragments were cocrystallized with RTA, and crystal structures were solved. Two fragments bound at the P stalk binding site, and the third bound to helix D, a motif distinct from the P stalk binding site. All fragments bound RTA remote from the catalytic site and caused little change in catalytic site geometry. Two fragments uniquely bound at the hydrophobic pocket with affinity sufficient to inhibit the catalytic activity on eukaryotic ribosomes in the low micromolar range. The binding mode of these inhibitors mimicked the interaction of the P stalk peptide, establishing that small molecule inhibitors can inhibit RTA binding to the ribosome with the potential for therapeutic intervention.


Assuntos
Ricina , Sítios de Ligação , Peptídeos/metabolismo , Ligação Proteica , Ribossomos/metabolismo , Ricina/metabolismo
6.
Top Spinal Cord Inj Rehabil ; 26(4): 268-274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536732

RESUMO

BACKGROUND: There are limited psychometrically sound measures to assess higher level balance in individuals with incomplete spinal cord injury (iSCI). OBJECTIVES: To evaluate interrater and intrarater reliability and convergent validity of the Functional Gait Assessment (FGA) in individuals with iSCI. METHODS: Twelve participants (11 male, 1 female) 32 to 73 years old with chronic motor iSCI, American Spinal Injury Association Impairment Scale C (n = 2) or D (n = 10), were included. Participants completed five outcome measures during a single test session including lower extremity motor scores from the International Standards for the Neurological Classification of Spinal Cord Injury, FGA, 10-Meter Walk Test (10MWT), Walking Index for Spinal Cord Injury (WISCI-II), and the Spinal Cord Injury Functional Ambulation Profile (SCI-FAP). RESULTS: Inter- and intrarater reliability for the FGA were excellent. Interrater reliability was excellent with intraclass correlation coefficient (ICC) scores greater than 0.92 (p < .001). Interrater reliability against an expert was also excellent for all raters, with an ICC greater than or equal to 0.92 (p < .01). Intrarater reliability was excellent with an ICC score of greater than 0.91 (p < .002) for all raters. Validity of the FGA with 10MWT was -0.90 (p = .000), FGA with WISCI-II was 0.74 (p = .006), and FGA with SCI-FAP was -0.83 (p = .001). CONCLUSION: The FGA is a reliable and valid outcome measure to use when assessing gait and balance in individuals with motor iSCI. The FGA provides clinicians with a single tool to utilize across a variety of neurologic diagnoses.


Assuntos
Análise da Marcha/normas , Transtornos Neurológicos da Marcha/fisiopatologia , Equilíbrio Postural/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
7.
J Biol Chem ; 294(47): 17848-17862, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31624149

RESUMO

Ricin undergoes retrograde transport to the endoplasmic reticulum (ER), and ricin toxin A chain (RTA) enters the cytosol from the ER. Previous reports indicated that RTA inhibits activation of the unfolded protein response (UPR) in yeast and in mammalian cells. Both precursor (preRTA) and mature form of RTA (mRTA) inhibited splicing of HAC1u (u for uninduced) mRNA, suggesting that UPR inhibition occurred on the cytosolic face of the ER. Here, we examined the role of ribosome binding and depurination activity on inhibition of the UPR using mRTA mutants. An active-site mutant with very low depurination activity, which bound ribosomes as WT RTA, did not inhibit HAC1u mRNA splicing. A ribosome-binding mutant, which showed reduced binding to ribosomes but retained depurination activity, inhibited HAC1u mRNA splicing. This mutant allowed separation of the UPR inhibition by RTA from cytotoxicity because it reduced the rate of depurination. The ribosome-binding mutant inhibited the UPR without affecting IRE1 oligomerization or cleavage of HAC1u mRNA at the splice site junctions. Inhibition of the UPR correlated with the depurination level, suggesting that ribosomes play a role in splicing of HAC1u mRNA. We show that HAC1u mRNA is associated with ribosomes and does not get processed on depurinated ribosomes, thereby inhibiting the UPR. These results demonstrate that RTA inhibits HAC1u mRNA splicing through its depurination activity on the ribosome without directly affecting IRE1 oligomerization or the splicing reaction and provide evidence that IRE1 recognizes HAC1u mRNA that is associated with ribosomes.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Purinas/metabolismo , Splicing de RNA/genética , Proteínas Repressoras/metabolismo , Ribossomos/metabolismo , Ricina/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Multimerização Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
8.
Biosci Rep ; 39(10)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31548364

RESUMO

Ricin interacts with the ribosomal P stalk to cleave a conserved adenine from the α-sarcin/ricin loop (SRL) of the rRNA. Ricin toxin A chain (RTA) uses Arg235 as the most critical arginine for binding to the P stalk through electrostatic interactions to facilitate depurination. Structural analysis showed that a P2 peptide binds to a hydrophobic pocket on RTA and the last two residues form hydrogen bonds with Arg235. The importance of hydrophobic residues relative to Arg235 in the interaction with the P stalk in vivo and on the toxicity of RTA is not known. Here, we mutated residues in the hydrophobic pocket to analyze their contribution to toxicity and depurination activity in yeast and in mammalian cells. We found that Leu232, Tyr183 and Phe240 contribute cumulatively to toxicity, with Leu232 being the most significant. A quadruple mutant, Y183A/L232A/R235A/F240A, which combined mutations in critical hydrophobic residues with R235A completely abolished the activity of RTA, indicating that Arg235 and hydrophobic residues are required for full biological activity. Y183A and F240A mutants had reduced activity on RNA, but higher activity on ribosomes compared with R235A in vitro, suggesting that they could partially regain activity upon interaction with ribosomes. These results expand the region of interaction between RTA and the P stalk critical for cellular activity to include the hydrophobic pocket and provide the first evidence that interaction of P stalk with the hydrophobic pocket promotes a conformational rearrangement of RTA to correctly position the active site residues for catalytic attack on the SRL.


Assuntos
Ribossomos/química , Ricina/química , Saccharomyces cerevisiae/química , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Leucina , Ribossomos/genética , Ribossomos/metabolismo , Ricina/genética , Ricina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Toxins (Basel) ; 10(9)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217009

RESUMO

Ricin A chain (RTA) depurinates the sarcin/ricin loop (SRL) by interacting with the C-termini of the ribosomal P stalk. The ribosome interaction site and the active site are located on opposite faces of RTA. The interaction with P proteins allows RTA to depurinate the SRL on the ribosome at physiological pH with an extremely high activity by orienting the active site towards the SRL. Therefore, if an inhibitor disrupts RTA⁻ribosome interaction by binding to the ribosome binding site of RTA, it should inhibit the depurination activity. To test this model, we synthesized peptides mimicking the last 3 to 11 amino acids of P proteins and examined their interaction with wild-type RTA and ribosome binding mutants by Biacore. We measured the inhibitory activity of these peptides on RTA-mediated depurination of yeast and rat liver ribosomes. We found that the peptides interacted with the ribosome binding site of RTA and inhibited depurination activity by disrupting RTA⁻ribosome interactions. The shortest peptide that could interact with RTA and inhibit its activity was four amino acids in length. RTA activity was inhibited by disrupting its interaction with the P stalk without targeting the active site, establishing the ribosome binding site as a new target for inhibitor discovery.


Assuntos
Peptídeos/metabolismo , Ribossomos/metabolismo , Ricina/metabolismo , Ligação Proteica
10.
Toxins (Basel) ; 10(6)2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29899209

RESUMO

Ribosome-inactivating proteins (RIPs) are potent toxins that inactivate ribosomes by catalytically removing a specific adenine from the α-sarcin/ricin loop (SRL) of the large rRNA. Direct assays for measuring depurination activity and indirect assays for measuring the resulting translation inhibition have been employed to determine the enzyme activity of RIPs. Rapid and sensitive methods to measure the depurination activity of RIPs are critical for assessing their reaction mechanism, enzymatic properties, interaction with ribosomal proteins, ribotoxic stress signaling, in the search for inhibitors and in the detection and diagnosis of enteric infections. Here, we review the major assays developed for measuring the catalytic activity of RIPs, discuss their advantages and disadvantages and explain how they are used in understanding the catalytic mechanism, ribosome specificity, and dynamic enzymatic features of RIPs.


Assuntos
Bioensaio , Proteínas Inativadoras de Ribossomos/metabolismo , Animais , Catálise
11.
Sci Rep ; 7(1): 14672, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116155

RESUMO

Clostridium difficile is a significant concern as a nosocomial pathogen, and genetic tools are important when analyzing the physiology of such organisms so that the underlying physiology/pathogenesis of the organisms can be studied. Here, we used TargeTron to investigate the role of selenoproteins in C. difficile Stickland metabolism and found that a TargeTron insertion into selD, encoding the selenophosphate synthetase that is essential for the specific incorporation of selenium into selenoproteins, results in a significant growth defect and a global loss of selenium incorporation. However, because of potential polar effects of the TargeTron insertion, we developed a CRISPR-Cas9 mutagenesis system for C. difficile. This system rapidly and efficiently introduces site-specific mutations into the C. difficile genome (20-50% mutation frequency). The selD CRISPR deletion mutant had a growth defect in protein-rich medium and mimicked the phenotype of a generated TargeTron selD mutation. Our findings suggest that Stickland metabolism could be a target for future antibiotic therapies and that the CRISPR-Cas9 system can introduce rapid and efficient modifications into the C. difficile genome.


Assuntos
Clostridioides difficile/metabolismo , Edição de Genes/métodos , Selenoproteínas/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Clostridioides difficile/genética , Eletroforese em Gel de Poliacrilamida , Genes Bacterianos/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Selênio/metabolismo , Selenoproteínas/genética
12.
Infect Immun ; 84(12): 3290-3301, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27600507

RESUMO

The A1 subunits of Shiga toxin 1 (Stx1A1) and Shiga toxin 2 (Stx2A1) interact with the conserved C termini of ribosomal-stalk P-proteins to remove a specific adenine from the sarcin/ricin loop. We previously showed that Stx2A1 has higher affinity for the ribosome and higher catalytic activity than Stx1A1. To determine if conserved arginines at the distal face of the active site contribute to the higher affinity of Stx2A1 for the ribosome, we mutated Arg172, Arg176, and Arg179 in both toxins. We show that Arg172 and Arg176 are more important than Arg179 for the depurination activity and toxicity of Stx1A1 and Stx2A1. Mutation of a single arginine reduced the depurination activity of Stx1A1 more than that of Stx2A1. In contrast, mutation of at least two arginines was necessary to reduce depurination by Stx2A1 to a level similar to that of Stx1A1. R176A and R172A/R176A mutations eliminated interaction of Stx1A1 and Stx2A1 with ribosomes and with the stalk, while mutation of Arg170 at the active site reduced the binding affinity of Stx1A1 and Stx2A1 for the ribosome, but not for the stalk. These results demonstrate that conserved arginines at the distal face of the active site are critical for interactions of Stx1A1 and Stx2A1 with the stalk, while a conserved arginine at the active site is critical for non-stalk-specific interactions with the ribosome. Arginine mutations at either site reduced ribosome interactions of Stx1A1 and Stx2A1 similarly, indicating that conserved arginines are critical for ribosome interactions but do not contribute to the higher affinity of Stx2A1 for the ribosome.


Assuntos
Sequência Conservada , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Prefenato Desidratase/metabolismo , Ribossomos/metabolismo , Saccharomyces/metabolismo , Toxinas Shiga/metabolismo , Animais , Sítios de Ligação , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Complexos Multienzimáticos/genética , Mutação , Plasmídeos , Prefenato Desidratase/genética , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , RNA Fúngico/metabolismo , Ratos , Ribossomos/química , Saccharomyces/genética , Toxinas Shiga/química
13.
Phys Ther ; 96(12): 1919-1929, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27313241

RESUMO

BACKGROUND: High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. OBJECTIVE: The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. DESIGN: A single-day, repeated-measures, pretraining-posttraining study design was used. METHODS: Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. RESULTS: The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64-0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. LIMITATIONS: Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. CONCLUSIONS: High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and quality in individuals with iSCI, which contrasts with traditional theories of motor dysfunction following neurologic injury.


Assuntos
Terapia por Exercício/métodos , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Velocidade de Caminhada/fisiologia , Adolescente , Adulto , Idoso , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Extremidade Inferior/fisiologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Fatores de Tempo , Adulto Jovem
15.
Infect Immun ; 84(1): 149-61, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483409

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1.


Assuntos
Ribossomos/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Animais , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Células HEK293 , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Ligação Proteica , Biossíntese de Proteínas/genética , Ratos , Saccharomyces cerevisiae/genética
16.
Bioorg Med Chem Lett ; 25(24): 5813-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26542966

RESUMO

The clinical success of the echinocandins, which can only be administered parentally, has validated ß-1,3-glucan synthase (GS) as an antifungal target. Semi-synthetic modification of enfumafungin, a triterpene glycoside natural product, was performed with the aim of producing a new class of orally active GS inhibitors. Replacement of the C2 acetoxy moiety with various heterocycles did not improve GS or antifungal potency. However, replacement of the C3 glycoside with an aminoether moiety dramatically improved oral pharmacokinetic (PK) properties while maintaining GS and antifungal potency. Installing an aminotetrazole at C2 in conjunction with an N-alkylated aminoether at C3 produced derivatives with significantly improved GS and antifungal potency that exhibited robust oral efficacy in a murine model of disseminated candidiasis.


Assuntos
Antifúngicos/química , Glicosídeos/química , Triterpenos/química , beta-Glucanas/química , Administração Oral , Animais , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/veterinária , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Meia-Vida , Camundongos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Terpenos/química , beta-Glucanas/farmacocinética , beta-Glucanas/uso terapêutico
17.
Compr Psychiatry ; 57: 106-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25434845

RESUMO

BACKGROUND AND OBJECTIVES: Emotion plays a significant role in schizophrenia. Emotional awareness (i.e., attention to and clarity of emotions) is associated with a wide range of outcomes. Given that individuals with schizophrenia and schizoaffective disorder differ in the significance of their mood symptoms, the present research examined whether the association between emotional awareness and delusions differs for these two groups of patients. METHODS: Emotional awareness (i.e., attention to and clarity of emotions) was measured with self-report in a sample of 44 individuals diagnosed with either schizophrenia or schizoaffective disorder. Clinical ratings of delusions were made using the Scale for the Assessment of Positive Symptoms. RESULTS: For the sample as a whole, individuals with higher levels of attention to emotion tended to have more severe delusions. In addition, diagnostic group significantly moderated the relation between emotional clarity and delusions. LIMITATIONS: Conclusions regarding causality cannot be drawn due to the cross-sectional design. Replication is particularly important given the small sample sizes. CONCLUSIONS: The present research indicates that emotional awareness is associated with delusions. The results raise the possibility that the emotional factors that contribute to delusional beliefs among individuals with schizophrenia differ in at least some ways from the emotional factors that contribute to delusional beliefs among individuals with schizoaffective disorder.


Assuntos
Conscientização , Delusões/psicologia , Emoções , Transtornos Psicóticos/psicologia , Psicologia do Esquizofrênico , Adulto , Estudos Transversais , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/complicações , Transtornos do Humor/psicologia , Escalas de Graduação Psiquiátrica , Adulto Jovem
18.
ACS Infect Dis ; 1(1): 59-72, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-26878058

RESUMO

Steadily increasing antifungal drug resistance and persistent high rates of fungal-associated mortality highlight the dire need for the development of novel antifungals. Characterization of inhibitors of one enzyme in the GPI anchor pathway, Gwt1, has generated interest in the exploration of targets in this pathway for further study. Utilizing a chemical genomics-based screening platform referred to as the Candida albicans fitness test (CaFT), we have identified novel inhibitors of Gwt1 and a second enzyme in the glycosylphosphatidylinositol (GPI) cell wall anchor pathway, Mcd4. We further validate these targets using the model fungal organism Saccharomyces cerevisiae and demonstrate the utility of using the facile toolbox that has been compiled in this species to further explore target specific biology. Using these compounds as probes, we demonstrate that inhibition of Mcd4 as well as Gwt1 blocks the growth of a broad spectrum of fungal pathogens and exposes key elicitors of pathogen recognition. Interestingly, a strong chemical synergy is also observed by combining Gwt1 and Mcd4 inhibitors, mirroring the demonstrated synthetic lethality of combining conditional mutants of GWT1 and MCD4. We further demonstrate that the Mcd4 inhibitor M720 is efficacious in a murine infection model of systemic candidiasis. Our results establish Mcd4 as a promising antifungal target and confirm the GPI cell wall anchor synthesis pathway as a promising antifungal target area by demonstrating that effects of inhibiting it are more general than previously recognized.

20.
Sci Rep ; 3: 3397, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24292269

RESUMO

We reported previously (±)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(±)-Retro-2(cycl)] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (±)-Retro-2(cycl), analog synthesis, and cell-based evaluation showing that the two optically pure enantiomers and their achiral analog have nearly the same degree of cell protection against ricin as (±)-Retro-2(cycl). We also report our computational studies explaining the lack of stereo preference and revealing a common pharmacophore of structurally distinct inhibitors of intracellular retrograde trafficking of RIPs. This pharmacophore comprises a central aromatic ring o-substituted by an aromatic ring and a moiety bearing an O or S atom attached to sp² C atom(s). These results offer new insights into lead identification and optimization for RIP antidote development to minimize the global health threat caused by ribosome-inactivating proteins.


Assuntos
Transporte Proteico/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Ricina/metabolismo , Estereoisomerismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...