Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 197: 113786, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801797

RESUMO

Rapid and accurate clinical assessment of hemostasis is essential for managing patients who undergo invasive procedures, experience hemorrhages, or receive antithrombotic therapies. Hemostasis encompasses an ensemble of interactions between the cellular and non-cellular blood components, but current devices assess only partial aspects of this complex process. In this work, we describe the development of a new approach to simultaneously evaluate coagulation function, platelet count or function, and hematocrit using a carbon nanotube-paper composite (CPC) capacitance sensor. CPC capacitance response to blood clotting at 1.3 MHz provided three sensing parameters with distinctive sensitivities towards multiple clotting elements. Whole blood-based hemostasis assessments were conducted to demonstrate the potential utility of the developed sensor for various hemostatic conditions, including pathological conditions, such as hemophilia and thrombocytopenia. Results showed good agreements when compared to a conventional thromboelastography. Overall, the presented CPC capacitance sensor is a promising new biomedical device for convenient non-contact whole-blood based comprehensive hemostasis evaluation.


Assuntos
Técnicas Biossensoriais , Transtornos da Coagulação Sanguínea , Nanotubos de Carbono , Coagulação Sanguínea , Hemostasia , Humanos
2.
Biomed Microdevices ; 22(3): 50, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32725281

RESUMO

For point-of-care diagnosis of tuberculosis (TB), current TB diagnostic approaches need to be further improved for achieving an accurate diagnosis that is rapid and low-cost. This paper presents an immuno-resistive sensor on a plastic film for inexpensive, simple TB screening. The sensor is composed of single-walled carbon nanotubes (SWCNTs) functionalized with polyclonal antibodies raised against the MPT64 surface antigen from Mycobacterium tuberculosis (MTB). The target analyte of either MTB or MPT64 is spiked in tongue swab and sputum samples. Under optimized conditions, targets are directly detected from tongue swab samples by resistive measurement. Target analytes spiked into human sputa are enriched with a magnetic bead protocol followed by resistive detection. This highly sensitive film sensor will facilitate rapid TB screening with the added benefits of a small form factor, simple operation, low power requirement, and low cost.


Assuntos
Programas de Rastreamento/instrumentação , Nanotubos de Carbono/química , Testes Imediatos , Tuberculose/diagnóstico , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/fisiologia , Plásticos/química , Escarro/microbiologia
3.
Nanotechnology ; 29(33): 335304, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29808828

RESUMO

Single-walled carbon nanotubes (SWCNTs) are used as a key component for chemical sensors. For miniature scale design, a continuous printing method is preferred for electrical conductance without damaging the substrate. In this paper, a non-contact capillary pen printing method is presented by the formation of a nanoink bridge between the nib of a capillary pen and a polyethylene terephthalate film. A critical parameter for stable printing is the advancing contact angle at the bridge meniscus, which is a function of substrate temperature and printing speed. The printed pattern including dots, lines, and films of SWCNTs are characterized by morphology, optical transparency, and electrical properties. Gas and pH sensors fabricated using the non-contact printing method are demonstrated as applications.

4.
Sensors (Basel) ; 17(1)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28025540

RESUMO

Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Nanotecnologia/métodos , DNA/química , Limite de Detecção , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...