Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557603

RESUMO

Microecological preparation could relieve Enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhea in piglets, but which bacteria play a key role and the mitigation mechanism have not been fully clarified. In this study, 36 male mice were randomly divided into six groups (CON, K88, BK (Bifidobacterium longum + K88), LK (Lactobacillus plantarum + K88), PK (Pediococcus acidilactici + K88), and MK (mixed strains + K88)) to explore the prevention mechanisms. Three probiotic strains and their mixtures (TPSM) significantly relieved the weight loss and restored the ratio of villus height to crypt depth in the jejunum. Except for Bifidobacterium longum, other strains significantly decreased interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α) in mice serum. The TPSM treatment significantly downregulated the mRNA expression of the inflammatory cytokines and the Toll-like receptor and downstream gene (TLR4, MyD88, NF-κB) in jejunum induced by ETEC. Furthermore, the TPSM could restore dysbiosis of the intestinal microbiota caused by ETEC. The intestinal microbiota analysis demonstrated that Bifidobacterium longum enriched the Bifidobacterium genus (p < 0.05), Lactobacillus plantarum enriched the Lactobacillus genus (p < 0.05), Pediococcus acidilactici enriched the Coriobacteriaceae_UCG-002 and Christensenellaceae_R-7_group genus (p < 0.05), mixed bacteria enriched the Akkermansia genus (p < 0.05), but ETEC enriched the Desulfovibrio genus (p < 0.05). Meanwhile, the starch and sucrose metabolism, galactose and fructose metabolism, mannose metabolism and ABC transporters were increased with probiotics pre-treatment (p < 0.05). To sum up, the microecological preparation alleviated ETEC-induced diarrhea by regulating the immune response, rebalancing intestinal microbiota and improving carbohydrate metabolism.

2.
Front Microbiol ; 13: 1003498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338073

RESUMO

Fermented yellow wine lees (FYWL) are widely used to increase feed utilization and improve pig performance. Based on the preparation of co-FYWL using Bacillus subtilis and Enterococcus faecalis, the purpose of this study was to investigate the effects of co-FYWL on growth performance, gut microbiota, meat quality, and immune status of finishing pigs. 75 pigs were randomized to 3 treatments (5 replicates/treatment), basal diet (Control), a basal diet supplemented with 4%FYWL, and a basal diet supplemented with 8%FYWL, for 50 days each. Results showed that the 8% FYWL group significantly reduced the F/G and increased the average daily weight gain of pigs compared to the control group. In addition, 8% FYWL improved the richness of Lactobacillus and B. subtilis in the gut, which correlated with growth performance, serum immune parameters, and meat quality. Furthermore, acetate and butyrate in the feces were improved in the FYWL group. Simultaneously, FYWL improved the volatile flavor substances of meat, increased the content of flavor amino acids, and played a positive role in the palatability of meat. In addition, FYWL increased serum IgA, IgM, IL-4 and IL-10 levels. Overall, the growth performance, the gut microbiota associated with fiber degradation, meat quality, and immune status were improved in the 8% FYWL group.

3.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080599

RESUMO

To provide a safe and effective supplement of the essential trace element selenium, we focused on the biosynthesis of nanoselenium (SeNPs) via probiotics. A novel kind of exopolymer-functionalized nanoselenium (SeEPS), whose average size was 67.0 ± 0.6 nm, was produced by Bacillus subtilis SR41, whereas the control consisted of exopolymers without selenium (EPS). Chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy and high-performance liquid chromatography (HPLC) confirmed that SeEPS and EPS shared similar polysaccharide characteristic groups, such as COO- and C=O, and contained not only 45.2-45.4% of sugars but also 23.5-24.7% of proteins and some lipids. Both SeEPS and EPS were primarily composed of mannose, amino glucose, ribose, glucose and galactose. Furthermore, to identify the biologically active component of SeEPS, three kinds of selenium particles with different stabilizers [Se(0), bovine serum albumin-Se and EPS-Se] were synthesized chemically, and their ability to scavenge free radicals in vitro was compared with that of SeEPS and EPS. The results revealed that EPS itself exhibited weak superoxide and hydroxyl radical scavenging abilities. Nevertheless, SeEPS had superior antioxidant properties compared to all other products, possibly due to the specific structure of SeNPs and exopolymers. Our results suggested that exopolymer-functionalized SeNPs with specific monosaccharide composition and structure could eventually find a potential application as an antioxidant.

4.
Int J Biol Macromol ; 195: 142-151, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896465

RESUMO

In the present research, the water-soluble polysaccharides (AMP) from Atractylodes macrocephalae Koidz. were isolated and prepared. The protective effects of AMP on intestinal mucosal barrier injury induced by dextran sulfate sodium (DSS) in mice were investigated. It was found that AMP treatment significantly alleviated the body weight decreases and shorten colon length, and ameliorated colonic damage induced by DSS. Importantly, AMP prevented the over-expression of proinflammatory cytokines TNF-α, IL-1ß and IL-6, and decreased the infiltration of neutrophils in colon. Additionally, AMP could raise expressions of Mucin 2 and tight junction protein Claudin-1. AMP also modulated the intestinal microbiota by enhancing the overall richness and diversity, greatly reducing the proportion of harmful bacteria, for instance, Clostridiumsensu stricto1 and Escherichia Shigella, however, augmenting the ratio of potential beneficial bacteria such as Faecalibaculum and Bifidobacterium. This work offers some important insights on protective effects of polysaccharides AMP against intestinal barrier dysfunction and provides underlying mechanism of health-beneficial properties of these biological macromolecules.


Assuntos
Anti-Inflamatórios/efeitos adversos , Atractylodes/química , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Mucosa Intestinal/lesões , Polissacarídeos/administração & dosagem , Animais , Anti-Inflamatórios/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Filogenia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Cell Dev Biol ; 9: 685363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381773

RESUMO

Preservation of intestinal stem cells (ISCs) plays a critical role in initiating epithelial regeneration after intestinal injury. Cathelicidin peptides have been shown to participate in regulating intestinal damage repair. However, it is not known how exactly Cathelicidin-WA (CWA) exert its function after tissue damage. Using a gut injury model in mice involving Lipopolysaccharide (LPS), we observed that CWA administration significantly improved intestinal barrier function, preserved ISCs survival, and augmented ISCs viability within the small intestine (SI) under LPS treatment. In addition, CWA administration effectively prevented proliferation stops and promoted the growth of isolated crypts. Mechanistically, our results show that the appearance of γH2AX was accompanied by weakened expression of SETDB1, a gene that has been reported to safeguard genome stability. Notably, we found that CWA significantly rescued the decreased expression of SETDB1 and reduced DNA damage after LPS treatment. Taken together, CWA could protect against LPS-induced gut damage through enhancing ISCs survival and function. Our results suggest that CWA may become an effective therapeutic regulator to treat intestinal diseases and infections.

6.
Int J Biol Macromol ; 167: 76-84, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248053

RESUMO

Many dietary polysaccharides have been shown to protect the intestinal barrier integrity against several noxious stimuli. Previously, we have isolated a polysaccharide RAMPtp from Atractylodis macrocephalae Koidz, and analyzed its structure. However, the effects of RAMPtp on intestinal barrier function have not been investigated. Here, we evaluated the protective effects of RAMPtp on Dextran sulfate sodium (DSS)-induced intestinal epithelial cells (IECs) injury. The findings showed that RAMPtp boosted the proliferation and survival of IECs during DSS stimulation. Furthermore, we found that RAMPtp protected the IECs from injury induced by DSS through maintaining the barrier function and inflammation response. Mechanistically, we identified a novel lncRNA ITSN1-OT1, which was induced by RAMPtp during DSS stimulation. It blocked the nuclear import of phosphorylated STAT2 to prevent the DSS induced decreased expression and structural destroy of tight junction proteins. Hence, the study clarified the protective effects and mechanism of polysaccharides RAMPtp on DSS-induced intestinal barrier dysfunction.


Assuntos
Atractylodes/química , Colite/etiologia , Sulfato de Dextrana/efeitos adversos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , RNA Longo não Codificante/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/patologia , Biologia Computacional , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Camundongos , Extratos Vegetais/química , Polissacarídeos/química , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Suínos
7.
Cells ; 8(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842409

RESUMO

Diarrhea, such as steatorrhea, could result from fat absorption disorders, which could be caused by many factors, including Escherichia coli infection. However, it is not clear how E. coli affects fatty acid absorption in animals. Lipopolysaccharide (LPS), as one of the main pathogenic components of E. coli, is the main cause of the virulence of E. coli. Therefore, we used LPS to explore the underlying mechanism of E. coli that causes the inhibition of fatty acid absorption in the intestine. In this study, we found that LPS caused apoptosis of intestinal epithelial cells in mice. Further, caspase-3 activation caused the inhibition of fatty acid absorption in the intestinal porcine enterocyte cell line (IPEC-J2). However, direct treatment of LPS did not induce any significant change in fatty acid absorption in IPEC-J2. We then prepared conditioned medium of LPS-treated porcine macrophage cell line (3D4/2) for incubating IPEC-J2, as LPS initiates inflammation by activating immune cells. The conditioned medium decreased fatty acid absorption and caspase-3 activation in IPEC-J2. While inhibiting the activation of caspase-3 in IPEC-J2, conditioned medium no longer caused serious deficiency of fatty acid absorption. As IL-1ß, IL-6, and TNF-α in conditioned medium increase significantly, IPEC-J2 was treated with IL-1ß, IL-6, and TNF-α, respectively. Only TNF-α induced caspase-3 activation in IPEC-J2. Reducing the secretion of TNF-α in 3D4/2, there was no obvious activation of caspase-3 in IPEC-J2, and fatty acid absorption recovered effectively. Based on the above results, we hold the opinion that LPS does not suppress fatty acid absorption directly in the intestine, but may work on macrophages that secrete cytokines, such as TNF-α, inducing caspase-3 activation and finally leading to the inhibition of fatty acid absorption in intestine.


Assuntos
Enterócitos/citologia , Ácidos Graxos/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Camundongos , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...