Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 256, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978573

RESUMO

BACKGROUND: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS: Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS: These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Ileíte , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Ileíte/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Celulas de Paneth , Butiratos/metabolismo , Mitocôndrias/metabolismo , Mucosa Intestinal/metabolismo
2.
Nat Metab ; 5(9): 1595-1614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653044

RESUMO

In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.


Assuntos
Adipogenia , Mitocôndrias , Criança , Animais , Humanos , Ceramidas , Drosophila , Ferro , Ácidos Graxos
3.
Front Pharmacol ; 13: 1049640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561339

RESUMO

Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on ß-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of ß3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.

4.
Commun Biol ; 5(1): 493, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610507

RESUMO

The major limitations of DNA-targeting chemotherapy drugs include life-threatening toxicity, acquired resistance and occurrence of secondary cancers. Here, we report a small molecule, Carbazole Blue (CB), that binds to DNA and inhibits cancer growth and metastasis by targeting DNA-related processes that tumor cells use but not the normal cells. We show that CB inhibits the expression of pro-tumorigenic genes that promote unchecked replication and aberrant DNA repair that cancer cells get addicted to survive. In contrast to chemotherapy drugs, systemic delivery of CB suppressed breast cancer growth and metastasis with no toxicity in pre-clinical mouse models. Using PDX and ex vivo explants from estrogen receptor (ER) positive, ER mutant and TNBC patients, we further demonstrated that CB effectively blocks therapy-sensitive and therapy-resistant breast cancer growth without affecting normal breast tissue. Our data provide a strong rationale to develop CB as a viable therapeutic for treating breast cancers.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA , Reparo do DNA , Feminino , Humanos , Camundongos , Receptores de Estrogênio/metabolismo
5.
Cells ; 10(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072441

RESUMO

Paneth cell defects in Crohn's disease (CD) patients (called the Type I phenotype) are associated with worse clinical outcomes. Recent studies have implicated mitochondrial dysfunction in Paneth cells as a mediator of ileitis in mice. We hypothesized that CD Paneth cells exhibit impaired mitochondrial health and that mitochondrial-targeted therapeutics may provide a novel strategy for ileal CD. Terminal ileal mucosal biopsies from adult CD and non-IBD patients were characterized for Paneth cell phenotyping and mitochondrial damage. To demonstrate the response of mitochondrial-targeted therapeutics in CD, biopsies were treated with vehicle or Mito-Tempo, a mitochondrial-targeted antioxidant, and RNA transcriptome was analyzed. During active CD inflammation, the epithelium exhibited mitochondrial damage evident in Paneth cells, goblet cells, and enterocytes. Independent of inflammation, Paneth cells in Type I CD patients exhibited mitochondrial damage. Mito-Tempo normalized the expression of interleukin (IL)-17/IL-23, lipid metabolism, and apoptotic gene signatures in CD patients to non-IBD levels. When stratified by Paneth cell phenotype, the global tissue response to Mito-Tempo in Type I patients was associated with innate immune, lipid metabolism, and G protein-coupled receptor (GPCR) gene signatures. Targeting impaired mitochondria as an underlying contributor to inflammation provides a novel treatment approach for CD.


Assuntos
Antioxidantes/uso terapêutico , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Inflamação/tratamento farmacológico , Mitocôndrias/metabolismo , Biópsia/métodos , Enterócitos/citologia , Epitélio/efeitos dos fármacos , Epitélio/patologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Celulas de Paneth/patologia , Fenótipo
6.
Haematologica ; 106(2): 495-512, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029507

RESUMO

Ataxia telangiectasia mutated (ATM), a critical DNA damage sensor with protein kinase activity,is frequently altered in human cancers including mantle cell lymphoma (MCL). Loss of ATM protein is linked to accumulation of nonfunctional mitochondria and defective mitophagy, in both murine thymocytes and in A-T cells. However, the mechanistic role of ATM kinase in cancer cell mitophagy is unknown. Here, we provide evidence that FCCP-induced mitophagy in MCL and other cancer cell lines is dependent on ATM but independent of its kinase function. While Granta-519 MCL cells possess single copy and kinase dead ATM and are resistant to FCCP-induced mitophagy, both Jeko-1 and Mino cells are ATM proficient and induce mitophagy. Stable knockdown of ATM in Jeko-1 and Mino cells conferred resistance to mitophagy and was associated with reduced ATP production, oxygen consumption, and increased mROS. ATM interacts with the E3 ubiquitin ligase Parkin in a kinase-independent manner. Knockdown of ATM in HeLa cells resulted in proteasomal degradation of GFP-Parkin which was rescued by the proteasome inhibitor, MG132 suggesting that ATM-Parkin interaction is important for Parkin stability. Neither loss of ATM kinase activity in primary B cell lymphomas nor inhibition of ATM kinase in MCL, A-T and HeLa cell lines mitigated FCCP or CCCP-induced mitophagy suggesting that ATM kinase activity is dispensable for mitophagy. Malignant B-cell lymphomas without detectable ATM, Parkin, Pink1, and Parkin-Ub ser65 phosphorylation were resistant to mitophagy, providing the first molecular evidence of ATM's role in mitophagy in MCL and other B-cell lymphomas.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Linfoma de Célula do Manto , Adulto , Animais , Células HeLa , Humanos , Linfoma de Célula do Manto/genética , Camundongos , Mitofagia/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Cells ; 8(4)2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978984

RESUMO

Precisely measuring tumor-associated alterations in metabolism clinically will enable the efficient assessment of therapeutic responses. Advances in imaging technologies can exploit the differences in cancer-associated cell metabolism as compared to normal tissue metabolism, linking changes in target metabolism to therapeutic efficacy. Metabolic imaging by Positron Emission Tomography (PET) employing 2-fluoro-deoxy-glucose ([18F]FDG) has been used as a routine diagnostic tool in the clinic. Recently developed hyperpolarized Magnetic Resonance (HP-MR), which radically increases the sensitivity of conventional MRI, has created a renewed interest in functional and metabolic imaging. The successful translation of this technique to the clinic was achieved recently with measurements of 13C-pyruvate metabolism. Here, we review the potential clinical roles for metabolic imaging with hyperpolarized MRI as applied in assessing therapeutic intervention in different cancer systems.


Assuntos
Isótopos de Carbono/metabolismo , Imageamento por Ressonância Magnética/métodos , Neoplasias , Avaliação de Processos e Resultados em Cuidados de Saúde , Ácido Pirúvico/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/terapia , Ratos
8.
Nat Commun ; 7: 11612, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27194471

RESUMO

The precise molecular alterations driving castration-resistant prostate cancer (CRPC) are not clearly understood. Using a novel network-based integrative approach, here, we show distinct alterations in the hexosamine biosynthetic pathway (HBP) to be critical for CRPC. Expression of HBP enzyme glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is found to be significantly decreased in CRPC compared with localized prostate cancer (PCa). Genetic loss-of-function of GNPNAT1 in CRPC-like cells increases proliferation and aggressiveness, in vitro and in vivo. This is mediated by either activation of the PI3K-AKT pathway in cells expressing full-length androgen receptor (AR) or by specific protein 1 (SP1)-regulated expression of carbohydrate response element-binding protein (ChREBP) in cells containing AR-V7 variant. Strikingly, addition of the HBP metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) to CRPC-like cells significantly decreases cell proliferation, both in-vitro and in animal studies, while also demonstrates additive efficacy when combined with enzalutamide in-vitro. These observations demonstrate the therapeutic value of targeting HBP in CRPC.


Assuntos
Hexosaminas/biossíntese , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Cancer Lett ; 376(2): 249-58, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27060208

RESUMO

Triple negative breast cancer (TNBC), characterized by an abundance of treatment-resistant breast cancer stem cells (CSCs), has a poorer prognosis than other types of breast cancers. Despite its aggressiveness, no effective targeted therapy exists for TNBC. Here, we demonstrate that CQ effectively targets CSCs via autophagy inhibition, mitochondrial structural damage, and impairment of double-stranded DNA break repair. Electron microscopy demonstrates CQ-induced mitochondrial cristae damage, which leads to mitochondrial membrane depolarization with a significant reduction in the activity of cytochrome c oxidase and accumulation of superoxide and double-stranded DNA breaks. CQ effectively diminishes the TNBC cells' ability to metastasize in vitro and in a TNBC xenograft model. When administered in combination with carboplatin, CQ effectively inhibits carboplatin-induced autophagy. This combination treatment significantly diminishes the expression of DNA repair proteins in CSC subpopulations, resulting in tumor growth reduction in carboplatin-resistant BRCA1 wild-type TNBC orthotopic xenografts. As TNBC's high treatment failure rate has been attributed to enrichment of CSCs, CQ, an autophagy inhibitor with anti-CSC effects, may be an effective adjunct to current TNBC chemotherapy regimens with carboplatin.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carboplatina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Histonas/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos SCID , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/ultraestrutura , Superóxidos/metabolismo , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/ultraestrutura , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Rep ; 14(10): 2476-89, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947078

RESUMO

On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression), we classified 894 renal cell carcinomas (RCCs) of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR) could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.


Assuntos
Carcinoma de Células Renais/patologia , Genômica , Neoplasias Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Cromatina/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , MicroRNAs/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Taxa de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
11.
Cancer Cell ; 26(3): 319-330, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25155756

RESUMO

We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Sequência de Bases , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA , Metilação de DNA , Análise Mutacional de DNA , DNA Mitocondrial/genética , Exoma , Genoma Humano , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Telomerase/genética , Transcriptoma
13.
Biochim Biophys Acta ; 1807(9): 1125-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21570379

RESUMO

Autophagy is a cellular housekeeping process that removes damaged or unwanted cellular components and recycles them to build new constituents. It is essential for tumor growth under adverse environment. Mitochondria play an important role in the formation of autophagosome and its subsequent docking and fusion with lysosome. To understand the contribution of mitochondria to the regulation of homeostatic autophagy in cancer cells, we used the transmitochondrial cytoplasmic hybrid (cybrid) model. Cybrid system allowed us to compare mitochondria from different cell types including highly metastatic breast cancer cell line MDA-MB-231 (c231), less metastatic breast cancer cell lines: MDA-MB-436 (c436) and MDA-MB-468 (c468), as well as non-cancerous mammary epithelial cell MCF-10A (c10A) in a defined nuclear background. The c231 exhibited lower LC3-II levels but higher ratio of LC3-II/LC3-I than c436, c468 and c10A. In addition, c231 displayed more punctate LC3-positive cells and had lower levels of sequestosome 1 (p62/SQSTM1) than other cybrids. These suggested that mitochondria could contribute to the increased autophagy and autophagic flux in metastatic cancer. This increased autophagy was found to be non-selective autophagy instead of selective mitophagy since LC3 puncta in c231 did not co-localize with mitochondria labeled by Mitotracker red or Tomm 20. The promotion of mitochondrial permeability transition (MPT) in c231 also contributed to increased autophagy. Block of MPT by the inhibition of low-conductance stage of MPT pores resulted in a decrease of LC3 puncta in c231. These results suggested that mitochondria from highly metastatic breast cancer cell line MDA-MB-231 can promote homeostatic autophagy of cancer through opening low-conductance MPT pores.


Assuntos
Autofagia , Neoplasias da Mama/patologia , Mitocôndrias/fisiologia , Sequência de Bases , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Primers do DNA , Humanos , Metástase Neoplásica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Biol Chem ; 285(6): 3608-3616, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19901029

RESUMO

The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor corepressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized a combined approach of chromatin immunoprecipitation (ChIP)-on-chip and gene expression array studies. By performing ChIP-on-chip on microarrays containing 24,000 promoters, we identified 541 SAFB1/SAFB2-binding sites in promoters of known genes, with significant enrichment on chromosomes 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2 and less were repressed. Interestingly, there was no significant overlap between the genes identified by ChIP-on-chip and gene expression array analysis, suggesting regulation through regions outside the proximal promoters. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in the regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that 12% of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms the primary role of SAFB1/SAFB2 as corepressors and also uncovers a previously unknown role for SAFB1 in the regulation of immune genes and in estrogen-mediated repression of genes.


Assuntos
Apoptose/genética , Imunidade/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/genética , Receptores de Estrogênio/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Estrogênios/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Dados de Sequência Molecular , Proteínas Associadas à Matriz Nuclear/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regiões Promotoras Genéticas/genética , Interferência de RNA , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...