Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445704

RESUMO

Immune checkpoint inhibitors (ICI) are commonly associated with thyroid immune-related adverse events, yet the mechanism has not been fully elucidated. We aimed to further explore the mechanism of ICI-induced thyroid dysfunction by assessing changes induced in the thyroid transcriptome by ICI treatment (αPD-1/αPD-L1) in a lung cancer murine model. RNA-sequencing of thyroid tissues revealed 952 differentially expressed genes (DEGs) with αPD-1 treatment (|fold-change| ≥1.8, FDR < 0.05). Only 35 DEG were identified with αPD-L1, and we therefore focused on the αPD-1 group alone. Ingenuity Pathway Analysis revealed that of 952 DEGs with αPD-1 treatment, 362 were associated with functions of cell death and survival, with predicated activation of pathways for apoptosis and necrosis (Z = 2.89 and Z = 3.21, respectively) and negative activation of pathways for cell viability and cell survival (Z = -6.22 and Z = -6.45, respectively). Compared to previously published datasets of interleukin-1ß and interferon γ-treated human thyroid cells, apoptosis pathways were similarly activated. However, unique changes related to organ inflammation and upstream regulation by cytokines were observed. Our data suggest that there are unique changes in gene expression in the thyroid associated with αPD-1 therapy. ICI-induced thyroid dysfunction may be mediated by increased tissue apoptosis resulting in destructive thyroiditis.


Assuntos
Neoplasias Pulmonares , Glândula Tireoide , Humanos , Animais , Camundongos , Glândula Tireoide/metabolismo , Transcriptoma , Receptor de Morte Celular Programada 1 , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Anticorpos/genética , Análise de Sequência de RNA
2.
Front Immunol ; 13: 1003871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275643

RESUMO

Neutrophils play critical roles in a broad spectrum of clinical conditions. Accordingly, manipulation of neutrophil function may provide a powerful immunotherapeutic approach. However, due to neutrophils characteristic short half-life and their large population number, this possibility was considered impractical. Here we describe the identification of peptides which specifically bind either murine or human neutrophils. Although the murine and human neutrophil-specific peptides are not cross-reactive, we identified CD177 as the neutrophil-expressed binding partner in both species. Decorating nanoparticles with a neutrophil-specific peptide confers neutrophil specificity and these neutrophil-specific nanoparticles accumulate in sites of inflammation. Significantly, we demonstrate that encapsulating neutrophil modifying small molecules within these nanoparticles yields specific modulation of neutrophil function (ROS production, degranulation, polarization), intracellular signaling and longevity both in vitro and in vivo. Collectively, our findings demonstrate that neutrophil specific targeting may serve as a novel mode of immunotherapy in disease.


Assuntos
Nanopartículas , Neutrófilos , Camundongos , Humanos , Animais , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo
3.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269405

RESUMO

Immunotherapy has become a leading modality for the treatment of cancer, but despite its increasing success, a substantial number of patients do not benefit from it. Cancer-related neutrophils have become, in recent years, a subject of growing interest. Distinct sub-populations of neutrophils have been identified at advanced stages of cancer. In this study, we aimed to evaluate the role of neutrophils in mediating the efficacy of immune checkpoint inhibitors (ICI) treatments (α-PD-1/PD-L1), by assessing lung tumor models in mice. We found that G-CSF overexpression by the tumor significantly potentiates the efficacy of ICI, whereas neutrophils' depletion abrogated their responses. Adoptive transfer of circulating normal-density neutrophils (NDN) resulted in significantly reduced tumor growth, whereas low-density neutrophils (LDN) had no effect. We next investigated the effect of ICI on neutrophils' functions. Following α-PD-L1 treatment, NDN displayed increased ROS production and increased cytotoxicity toward tumor cells but decreased degranulation. Together, our results suggest that neutrophils are important mediators of the ICI treatments and that mainly NDN are modulated following α-PD-L1 treatment. This research provides a better understanding of the function of neutrophils following immunotherapies and their impact on the efficacy of immunotherapy, supporting better understanding and future improvement of currently available treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Camundongos , Neutrófilos/patologia , Fenótipo
4.
Cancers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34680231

RESUMO

Neutrophils play a key role in cancer biology. In contrast to circulating normal-density neutrophils (NDN), the amount of low-density neutrophils (LDN) significantly increases with tumor progression. The correlation between these neutrophil subpopulations and intratumoral neutrophils (TANs) is still under debate. Using 4T1 (breast) and AB12 (mesothelioma) tumor models, we aimed to elucidate the source of TANs and to assess the mechanisms driving neutrophils' plasticity in cancer. Both NDN and LDN were found to migrate in response to CXCL1 and CXCL2 exposure, and co-infiltrate the tumor site ex vivo and in vivo, although LDN migration into the tumor was higher than NDN. Tumor-derived factors and chemokines, particularly CXCL1, were found to drive neutrophil phenotypical plasticity, inducing NDN to transition towards a low-density state (LD-NDN). LD-NDN appeared to differ from NDN by displaying a phenotypical profile similar to LDN in terms of nuclear morphology, surface receptor markers, decreased phagocytic abilities, and increased ROS production. Interestingly, all three subpopulations displayed comparable cytotoxic abilities towards tumor cells. Our data suggest that TANs originate from both LDN and NDN, and that a portion of LDN derives from NDN undergoing phenotypical changes. NDN plasticity resulted in a change in surface marker expression and functional activity, gaining characteristics of LDN.

5.
Cancer Immunol Res ; 9(7): 811-824, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33906865

RESUMO

A major mechanism through which neutrophils have been suggested to modulate tumor progression involves the interaction and subsequent modulation of other infiltrating immune cells. B cells have been found to infiltrate various cancer types and play a role in tumor immunity, offering new immunotherapy opportunities. Nevertheless, the specific impact of tumor-associated neutrophils (TAN) on B cells has largely been overlooked. In the current study, we aimed to characterize the role of TANs in the recruitment and modulation of B cells in the tumor microenvironment (TME). We showed that TANs actively participate in the recruitment of B cells to the TME and identified TNFα as the major cytokine mediating B-cell chemotaxis by TANs. The recruitment of CD45+B220+CD138- splenic B cells by TANs in vitro resulted in B-cell phenotypic modulation, with 68.6% ± 2.1% of the total migrated B cells displaying a CD45-B220+CD138+ phenotype, which is typical for plasma cells. This phenotype mirrored the large proportion (54.0% ± 6.1%) of CD45-B220+CD138+ intratumoral B cells (i.e., plasma cells) in Lewis lung carcinoma tumors. We next confirmed that the differentiation of CD45+B220+CD138- B cells to functionally active CD45-B220+CD138+ plasma cells required contact with TANs, was independent of T cells, and resulted in IgG production. We further identified membranal B-cell activating factor (BAFF) on TANs as a potential contact mechanism mediating B-cell differentiation, as blocking BAFF-receptor (BAFF-R) significantly reduced IgG production by 20%. Our study, therefore, demonstrates that TANs drive the recruitment and modulation of B cells into plasma cells in the TME, hence opening new avenues in the targeting of the immune system in cancer.


Assuntos
Neoplasias da Mama/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Neutrófilos/imunologia , Plasmócitos/imunologia , Microambiente Tumoral/imunologia , Animais , Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/antagonistas & inibidores , Receptor do Fator Ativador de Células B/metabolismo , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Lewis/patologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Camundongos , Neutrófilos/metabolismo , Plasmócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Cancer Immunol Immunother ; 69(2): 199-213, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31982939

RESUMO

Neutrophils play a major role in tumor biology. Among other functions, neutrophils can release extracellular traps (NETs), mesh-like structures of decondensed chromatin fibers, in a process termed NETosis. Originally characterized as an antimicrobial mechanism, NETosis has been described in cancer, but cancer-related predisposition is not clear. In the current study, we investigated the predisposition of circulating neutrophils to release NETs in lung cancer and the impact of G-CSF on this function, comparing circulating neutrophils isolated from cancer patients to the LLC and AB12 mouse models. We find that neutrophils from both healthy donors and cancer patients display high NETotic potential, with 30-60% of cells undergoing NETosis upon PMA stimulation. In contrast, neutrophils isolated from tumor-bearing mice displayed only 4-5% NETotic cells, though significantly higher than naive controls (1-2%). Despite differential mechanisms of activation described, Ionomycin and PMA mainly triggered suicidal rather than vital NETosis. G-CSF secreting tumors did not increase NETotic rates in murine neutrophils, and direct G-CSF stimulation did not promote their NET release. In contrast, human neutrophils strongly responded to G-CSF stimulation resulting also in a higher response to PMA + G-CSF stimulation. Our data show clear differences in NETotic potentials between human and murine neutrophils. We do not find a predisposition of neutrophils to release NETs in lung cancer patients compared to healthy controls, whereas cancer may modulate neutrophils' NETotic potential in mice. G-CSF secreted from tumors differentially affects murine and human NETosis in cancer. These important differences should be considered in future studies of NETosis in cancer.


Assuntos
Armadilhas Extracelulares/fisiologia , Neoplasias Pulmonares/imunologia , Neutrófilos/fisiologia , Animais , Linhagem Celular Tumoral , Armadilhas Extracelulares/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Ionomicina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...