Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739647

RESUMO

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory illness worldwide, but there is no approved pediatric vaccine. Here, we describe the development of the live-attenuated RSV vaccine candidate Min AL as well as engineered derivatives. Min AL was attenuated by codon-pair deoptimization (CPD) of seven of the 11 RSV open reading frames (ORFs) (NS1, NS2, N, P, M, SH and L; 2,073 silent nucleotide substitutions in total). Min AL replicated efficiently in vitro at the permissive temperature of 32°C but was highly temperature sensitive (shut-off temperature of 36°C). When serially passaged at increasing temperatures, Min AL retained greater temperature sensitivity compared to previous candidates with fewer CPD ORFs. However, whole-genome deep-sequencing of passaged Min AL revealed mutations throughout its genome, most commonly missense mutations in the polymerase cofactor P and anti-termination transcription factor M2-1 (the latter was not CPD). Reintroduction of selected mutations into Min AL partially rescued its replication in vitro at temperatures up to 40°C, confirming their compensatory effect. These mutations restored the accumulation of positive-sense RNAs to wild-type (wt) RSV levels, suggesting increased activity by the viral transcriptase, whereas viral protein expression, RNA replication, and virus production were only partly rescued. In hamsters, Min AL and derivatives remained highly restricted in replication in the upper and lower airways, but induced serum IgG and IgA responses to the prefusion form of F (pre F) that were comparable to those induced by wt RSV, as well as robust mucosal and systemic IgG and IgA responses against RSV G. Min AL and derivatives were fully protective against challenge virus replication. The derivatives had increased genetic stability compared to Min AL. Thus, Min AL and derivatives with selected mutations are stable, attenuated, yet highly-immunogenic RSV vaccine candidates that are available for further evaluation.


Assuntos
Fases de Leitura Aberta , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vacinas Atenuadas , Replicação Viral , Animais , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Cricetinae , Administração Intranasal , Códon , Imunidade nas Mucosas , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/genética , Mesocricetus , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/genética
2.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670948

RESUMO

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Masculino , Anticorpos Antivirais/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Vetores Genéticos/genética , Anticorpos Neutralizantes/imunologia , Administração Intranasal , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Imunoglobulina A/imunologia , Linfócitos T CD4-Positivos/imunologia , Humanos
3.
iScience ; 26(12): 108490, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144450

RESUMO

Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.

4.
Res Sq ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37790295

RESUMO

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. We evaluated the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to rhesus macaques. A single dose of MPV/S-2P was highly immunogenic, and a second dose increased the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increased levels of dimeric anti-S IgA in the airways. MPV/S-2P also induced S-specific CD4+ and CD8+ T-cells in the airways that differentiated into large populations of tissue-resident memory cells within a month after the boost. One dose induced substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P were fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.

5.
NPJ Vaccines ; 5(1): 111, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335100

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly emergent tick-borne bunyavirus first discovered in 2009 in China. SFTSV is a growing public health problem that may become more prominent owing to multiple competent tick-vectors and the expansion of human populations in areas where the vectors are found. Although tick-vectors of SFTSV are found in a wide geographic area, SFTS cases have only been reported from China, South Korea, Vietnam, and Japan. Patients with SFTS often present with high fever, leukopenia, and thrombocytopenia, and in some cases, symptoms can progress to severe outcomes, including hemorrhagic disease. Reported SFTSV case fatality rates range from ~5 to >30% depending on the region surveyed, with more severe disease reported in older individuals. Currently, treatment options for this viral infection remain mostly supportive as there are no licensed vaccines available and research is in the discovery stage. Animal models for SFTSV appear to recapitulate many facets of human disease, although none of the models mirror all clinical manifestations. There are insufficient data available on basic immunologic responses, the immune correlate(s) of protection, and the determinants of severe disease by SFTSV and related viruses. Many aspects of SFTSV virology and epidemiology are not fully understood, including a detailed understanding of the annual numbers of cases and the vertebrate host of the virus, so additional research on this disease is essential towards the development of vaccines and therapeutics.

6.
NPJ Vaccines ; 4: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839996

RESUMO

West Nile (WNV) and Japanese encephalitis viruses (JEV) are closely related, mosquito-borne neurotropic flaviviruses. Although there are no licensed human vaccines for WNV, JEV has multiple human vaccines, including the live, attenuated vaccine SA14-14-2. Investigations into determinants of attenuation of JE SA14-14-2 demonstrated that envelope (E) protein mutation E138K was crucial to the attenuation of mouse virulence. As WNV is closely related to JEV, we investigated whether or not the E-E138K mutation would be beneficial to be included in a candidate live attenuated WNV vaccine. Rather than conferring a mouse attenuated phenotype, the WNV E-E138K mutant reverted and retained a wild-type mouse virulence phenotype. Next-generation sequencing analysis demonstrated that, although the consensus sequence of the mutant had the E-E138K mutation, there was increased variation in the E protein, including a single-nucleotide variant (SNV) revertant to the wild-type glutamic acid residue. Modeling of the E protein and analysis of SNVs showed that reversion was likely due to the inability of critical E-protein residues to be compatible electrostatically. Therefore, this mutation may not be reliable for inclusion in candidate live attenuated vaccines in related flaviviruses, such as WNV, and care must be taken in translation of attenuating mutations from one virus to another virus, even if they are closely related.

7.
Vaccine ; 37(48): 7155-7164, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611100

RESUMO

Although West Nile virus (WNV) causes annual cases of neurological disease and deaths in humans, a vaccine has not been licensed for human use. Several WNV genes have been targeted for mutagenesis in attempts to generate live attenuated vaccine candidates, including the non-structural protein NS5. Specifically, mutation of WNV NS5-K61A or NS5-E218A in the catalytic tetrad of the methyltransferase decreases enzyme activity of the NS5 protein and correspondingly attenuates the virus in mice. In this report, NS5-K61A, NS5-E218A, and a double mutant encoding both mutations (NS5-K61A/E218A) were compared both in vitro and in vivo. Each single mutant was strongly attenuated in highly susceptible outbred mice, whereas the double mutant unexpectedly was not attenuated. Sequencing analysis demonstrated that the double mutant was capable of reversion at both residues NS5-61 and NS5-218, whereas the genotype of the single mutants did not show evidence of reversion. Overall, either NS5-K61A or NS5-E218A methyltransferase mutations could be potential mutations to include in a candidate live WNV vaccine; however, multiple mutations in the catalytic tetrad of the methyltransferase are not tolerated.


Assuntos
Genótipo , Mutação , Proteínas não Estruturais Virais/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Animais , Linhagem Celular , Citocinas/biossíntese , Feminino , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia
8.
Viruses ; 11(9)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491885

RESUMO

Although West Nile virus (WNV) has been a prominent mosquito-transmitted infection in North America for twenty years, no human vaccine has been licensed. With a cumulative number of 24,714 neurological disease cases and 2314 deaths in the U.S. since 1999, plus a large outbreak in Europe in 2018 involving over 2000 human cases in 15 countries, a vaccine is essential to prevent continued morbidity, mortality, and economic burden. Currently, four veterinary vaccines are licensed, and six vaccines have progressed into clinical trials in humans. All four veterinary vaccines require multiple primary doses and annual boosters, but for a human vaccine to be protective and cost effective in the most vulnerable older age population, it is ideal that the vaccine be strongly immunogenic with only a single dose and without subsequent annual boosters. Of six human vaccine candidates, the two live, attenuated vaccines were the only ones that elicited strong immunity after a single dose. As none of these candidates have yet progressed beyond phase II clinical trials, development of new candidate vaccines and improvement of vaccination strategies remains an important area of research.


Assuntos
Febre do Nilo Ocidental/prevenção & controle , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Ensaios Clínicos Fase II como Assunto/história , Desenvolvimento de Medicamentos/história , História do Século XXI , Humanos , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Vacinas contra o Vírus do Nilo Ocidental/administração & dosagem , Vacinas contra o Vírus do Nilo Ocidental/genética , Vacinas contra o Vírus do Nilo Ocidental/história , Vírus do Nilo Ocidental/genética
9.
Vaccines (Basel) ; 7(3)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434319

RESUMO

Zika virus (ZIKV) is a mosquito-borne Flavivirus. Previous studies have shown that mosquito-transmitted flaviviruses, including yellow fever, Japanese encephalitis, and West Nile viruses, could be attenuated by serial passaging in human HeLa cells. Therefore, it was hypothesized that wild-type ZIKV would also be attenuated after HeLa cell passaging. A human isolate from the recent ZIKV epidemic was subjected to serial HeLa cell passaging, resulting in attenuated in vitro replication in both Vero and A549 cells. Additionally, infection of AG129 mice with 10 plaque forming units (pfu) of wild-type ZIKV led to viremia and mortality at 12 days, whereas infection with 103 pfu of HeLa-passage 6 (P6) ZIKV led to lower viremia, significant delay in mortality (median survival: 23 days), and increased cytokine and chemokine responses. Genomic sequencing of HeLa-passaged virus identified two amino acid substitutions as early as HeLa-P3: pre-membrane E87K and nonstructural protein 1 R103K. Furthermore, both substitutions were present in virus harvested from HeLa-P6-infected animal tissue. Together, these data show that, similarly to other mosquito-borne flaviviruses, ZIKV is attenuated following passaging in HeLa cells. This strategy can be used to improve understanding of substitutions that contribute to attenuation of ZIKV and be applied to vaccine development across multiple platforms.

10.
Sci Rep ; 8(1): 4900, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559699

RESUMO

The mosquito-borne disease dengue is caused by four serologically- and genetically-related viruses, termed DENV-1 to DENV-4. Historical setbacks due to lack of human-like mouse models of dengue were partially remedied with characterization of lethal DENV-2 infection in immunocompromised AG129 mice (deficient in IFN-α/ß/γ receptors). Recently, our group established lethal AG129 mouse infection models of DENV-1, DENV-3, and DENV-4 using human isolates. Here we compare a non-lethal, disseminated model of DENV-3 infection using strain D83-144 to that of the lethal outcome following infection by strain C0360/94. Both strains belong to DENV-3 genotype II and differ by only 13 amino acids. Intraperitoneal inoculation of AG129 mice with strain D83-144 led to clinical signs of dengue infection, such as cytokine induction, thrombocytopenia, and systemic infection. However, C0360/94 infection led to features of severe human dengue, including coagulopathy and lethal outcome, whereas D83-144 infection does not. This study is the first to investigate a low passage, non-mouse lethal strain in AG129 mice and demonstrates that D83-144 infection induces milder features of human dengue than those induced by lethal C0360/94 infection. The results suggest that the AG129 mouse model has applications to investigate factors associated with mild or severe disease.


Assuntos
Vírus da Dengue/fisiologia , Dengue/fisiopatologia , Modelos Animais de Doenças , Genótipo , RNA Viral/genética , Animais , Citocinas/metabolismo , Dengue/virologia , Coagulação Intravascular Disseminada , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Receptores de Interferon/deficiência , Sorogrupo , Trombocitopenia
11.
Proteomics ; 18(3-4)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29327412

RESUMO

Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry it up to the seed head of the host plant. ARGT is caused by a tunicamycin-like corynetoxin that is produced in R. toxicus-infected seed galls. We analyzed protein expression in R. toxicus under stationary growth phase conditions to obtain a more complete understanding of the biology of this organism and identify potential targets for immunoassay development. A total of 323 unique proteins were identified, including those with putative roles in secondary metabolism and pathogenicity. The proteome analysis for this complex phytopathogenic Gram-positive bacterium will facilitate in the characterization of proteins necessary for host colonization and toxin production, and assist in the development of diagnostic assays. Data are available via ProteomeXchange with identifier PXD004238.


Assuntos
Actinomycetales/metabolismo , Toxinas Bacterianas/metabolismo , Glicolipídeos/metabolismo , Poaceae/microbiologia , Proteoma/análise , Actinomycetales/genética , Actinomycetales/crescimento & desenvolvimento
12.
Future Virol ; 12(5): 283-295, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28919920

RESUMO

West Nile virus (WNV), a neurotropic mosquito-borne flavivirus, has become endemic in the USA and parts of Europe since 1999. There is no licensed WNV vaccine for humans. Considering the robust immunity from immunization with live, attenuated vaccines, a live WNV vaccine is an ideal platform for disease control. Animal and mosquito studies have identified a number of candidate attenuating mutations, including the structural proteins premembrane/membrane and envelope, and the nonstructural proteins NS1, NS2A, NS3, NS4A, NS4B and NS5, and the 3' UTR. Many of the mutations that have been examined attenuate WNV using different mechanisms, thus providing a greater understanding of WNV virulence while also identifying specific mutations as candidates to include in a WNV live vaccine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...