Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965674

RESUMO

Preclinical models of osteochondral defects (OCDs) are fundamental test beds to evaluate treatment modalities before clinical translation. To increase the rigor and reproducibility of translational science for a robust "go or no-go," we evaluated disease progression and pain phenotypes within the whole joint for two OCD rat models with same defect size (1.5 x 0.8 mm) placed either in the trochlea or medial condyle of femur. Remarkably, we only found subtle transitory changes to gaits of rats with trochlear defect without any discernible effect to allodynia. At 8-weeks post-surgery, anatomical evaluations of joint showed early signs of osteoarthritis with EPIC-microCT. For the trochlear defect, cartilage attenuation was increased in trochlear, medial, and lateral compartments of the femur. For condylar defect, increased cartilage attenuation was isolated to the medial condyle of the femur. Further, the medial ossicle showed signs of deterioration as indicated with decreased bone mineral density and increased bone surface area to volume ratio. Thus, OCD in a weight-bearing region of the femur gave rise to more advanced osteoarthritis phenotype within a unilateral joint compartment. Subchondral bone remodeling was evident in both models without any indication of closure of the articular cartilage surface. We conclude that rat OCD, placed in the trochlear or condylar region of the femur, leads to differing severity of osteoarthritis progression. As found herein, repair of the defect with fibrous tissue and subchondral bone is insufficient to alleviate onset of osteoarthritis. Future therapies using rat OCD model should address joint osteoarthritis in addition to repair itself.

2.
Bone ; 187: 117195, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002838

RESUMO

Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 enhanced osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge produced consistent bone bridging of a critically sized rat femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized to treat a variety of spine disorders.


Assuntos
Diferenciação Celular , Osteogênese , Ratos Sprague-Dawley , Fusão Vertebral , Tacrolimo , Animais , Tacrolimo/farmacologia , Tacrolimo/administração & dosagem , Osteogênese/efeitos dos fármacos , Fusão Vertebral/métodos , Coelhos , Humanos , Ratos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Masculino
3.
Osteoarthritis Cartilage ; 32(7): 912-921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642879

RESUMO

OBJECTIVE: Exercise remains a hallmark treatment for post-traumatic osteoarthritis (PTOA) and may maintain joint homeostasis in part by clearing inflammatory cytokines, cells, and particles. It remains largely unknown whether exercise-induced joint clearance can provide therapeutic relief of PTOA. In this study, we hypothesized that exercise could slow the progression of preclinical PTOA in part by enhancing knee joint clearance. DESIGN: Surgical medial meniscal transection was used to induce PTOA in 3-month-old male Lewis rats. A sham surgery was used as a control. Mild treadmill walking was introduced 3 weeks post-surgery and maintained to 6 weeks post-surgery. Gait and isometric muscle torque were measured at the study endpoint. Near-infrared imaging tracked how exercise altered lymphatic and venous knee joint clearance during discrete time points of PTOA progression. RESULTS: Exercise mitigated joint degradation associated with PTOA by preserving glycosaminoglycan content and reducing osteophyte volume (effect size (95% Confidence Interval (CI)); 1.74 (0.71-2.26)). PTOA increased hind step widths (0.57 (0.18-0.95) cm), but exercise corrected this gait dysfunction (0.54 (0.16-0.93) cm), potentially indicating pain relief. Venous, but not lymphatic, clearance was quicker 1-, 3-, and 6-weeks post-surgery compared to baseline. The mild treadmill walking protocol expedited lymphatic clearance rate in moderate PTOA (3.39 (0.20-6.59) hrs), suggesting exercise may play a critical role in restoring joint homeostasis. CONCLUSIONS: We conclude that mild exercise has the potential to slow disease progression in part by expediting joint clearance in moderate PTOA.


Assuntos
Instabilidade Articular , Osteoartrite do Joelho , Condicionamento Físico Animal , Ratos Endogâmicos Lew , Animais , Masculino , Ratos , Condicionamento Físico Animal/fisiologia , Instabilidade Articular/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Modelos Animais de Doenças , Marcha/fisiologia , Articulação do Joelho/fisiopatologia , Glicosaminoglicanos/metabolismo , Osteoartrite/fisiopatologia , Osteoartrite/metabolismo , Osteófito , Progressão da Doença
4.
Cells Tissues Organs ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599194

RESUMO

BACKGROUND: Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY: In this review, we accomplish three goals: 1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; 2) detail the cellular populations in bone marrow and their impact on healing; and 3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES: We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots", "elements", and "blood". Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.

5.
Adv Healthc Mater ; 12(31): e2302271, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709282

RESUMO

3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability. Multiple CT-visible hydrogel-based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine-loaded liposome, gold, methacrylated gold (AuMA), and Gd2 O3 ) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2 O3 NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.


Assuntos
Bioimpressão , Iodo , Camundongos , Animais , Bioimpressão/métodos , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Tomografia Computadorizada por Raios X , Impressão Tridimensional , Alicerces Teciduais/química
6.
Am J Sports Med ; 50(5): 1389-1398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420503

RESUMO

BACKGROUND: Intra-articular injections of human mesenchymal stromal cells (hMSCs) have shown promise in slowing cartilage degradation in posttraumatic osteoarthritis (PTOA). Clinical use of cell therapies for osteoarthritis has accelerated in recent years without sufficient scientific evidence defining best-use practices. Common recommendations advise patients to avoid nonsteroidal anti-inflammatory drug (NSAID) use before and after cell injection over concerns that NSAIDs may affect therapeutic efficacy. Recommendations to restrict NSAID use are challenging for patients, and it is unclear if patients are compliant. HYPOTHESIS: NSAIDs will reduce the efficacy of hMSC therapy in treating a preclinical model of PTOA. STUDY DESIGN: Controlled laboratory study. METHODS: Lewis rats underwent medial meniscal transection (MMT) surgery to induce PTOA or a sham (sham group) surgery that did not progress to PTOA. Rats received naproxen solution orally daily before (Pre-NSAID group) or after (Post-NSAID group) hMSC treatment, throughout the course of the experiment (Full-NSAID group), or received hMSCs without NSAIDs (No NSAID). Cartilage morphology and composition were quantified using contrast-enhanced micro-computed tomography and histology. Pain (secondary allodynia) was measured using a von Frey filament. RESULTS: Injection of hMSCs attenuated cartilage degeneration associated with MMT. hMSCs prevented proteoglycan loss, maintained smooth cartilage surfaces, reduced cartilage lesions, reduced mineralized osteophyte formation, and reduced pain by week 7. The Pre-NSAID group had decreased proteoglycan levels compared with the hMSC group, although there were no other significant differences. Thus, pretreatment with NSAIDs had minimal effects on the therapeutic benefits of hMSC injections. The Post-NSAID and Full-NSAID groups, however, exhibited significantly worse osteoarthritis than the hMSC-only group, with greater proteoglycan loss, surface roughness, osteophyte volume, and pain. CONCLUSION: Use of NSAIDs before hMSC injection minimally reduced the therapeutic benefits for PTOA, which included preservation of cartilage surface integrity as well as a reduction in osteophytes. Use of NSAIDs after injections, however, substantially reduced the therapeutic efficacy of cellular treatment. CLINICAL RELEVANCE: Our data support the clinical recommendation of avoiding NSAID use after hMSC injection but suggest that using NSAIDs before treatment may not substantially diminish the therapeutic efficacy of cell treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Osteófito , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Cartilagem Articular/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Osteófito/patologia , Dor/metabolismo , Proteoglicanas/metabolismo , Ratos , Ratos Endogâmicos Lew , Roedores , Microtomografia por Raio-X
7.
Polymers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808295

RESUMO

Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.

8.
Am J Sports Med ; 48(14): 3503-3514, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33175559

RESUMO

BACKGROUND: Graft placement is a modifiable and often discussed surgical factor in anterior cruciate ligament (ACL) reconstruction (ACLR). However, the sensitivity of functional knee mechanics to variability in graft placement is not well understood. PURPOSE: To (1) investigate the relationship of ACL graft tunnel location and graft angle with tibiofemoral kinematics in patients with ACLR, (2) compare experimentally measured relationships with those observed with a computational model to assess the predictive capabilities of the model, and (3) use the computational model to determine the effect of varying ACL graft tunnel placement on tibiofemoral joint mechanics during walking. STUDY DESIGN: Controlled laboratory study. METHODS: Eighteen participants who had undergone ACLR were tested. Bilateral ACL footprint location and graft angle were assessed using magnetic resonance imaging (MRI). Bilateral knee laxity was assessed at the completion of rehabilitation. Dynamic MRI was used to measure tibiofemoral kinematics and cartilage contact during active knee flexion-extension. Additionally, a total of 500 virtual ACLR models were created from a nominal computational knee model by varying ACL footprint locations, graft stiffness, and initial tension. Laxity tests, active knee extension, and walking were simulated with each virtual ACLR model. Linear regressions were performed between internal knee mechanics and ACL graft tunnel locations and angles for the patients with ACLR and the virtual ACLR models. RESULTS: Static and dynamic MRI revealed that a more vertical graft in the sagittal plane was significantly related (P < .05) to a greater laxity compliance index (R2 = 0.40) and greater anterior tibial translation and internal tibial rotation during active knee extension (R2 = 0.22 and 0.23, respectively). Similarly, knee extension simulations with the virtual ACLR models revealed that a more vertical graft led to greater laxity compliance index, anterior translation, and internal rotation (R2 = 0.56, 0.26, and 0.13). These effects extended to simulations of walking, with a more vertical ACL graft inducing greater anterior tibial translation, ACL loading, and posterior migration of contact on the tibial plateaus. CONCLUSION: This study provides clinical evidence from patients who underwent ACLR and from complementary modeling that functional postoperative knee mechanics are sensitive to graft tunnel locations and graft angle. Of the factors studied, the sagittal angle of the ACL was particularly influential on knee mechanics. CLINICAL RELEVANCE: Early-onset osteoarthritis from altered cartilage loading after ACLR is common. This study shows that postoperative cartilage loading is sensitive to graft angle. Therefore, variability in graft tunnel placement resulting in small deviations from the anatomic ACL angle might contribute to the elevated risk of osteoarthritis after ACLR.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Amplitude de Movimento Articular , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia
9.
Clin Biomech (Bristol, Avon) ; 56: 75-83, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29852331

RESUMO

BACKGROUND: Abnormal knee mechanics may contribute to early cartilage degeneration following anterior cruciate ligament reconstruction. Anterior cruciate ligament graft geometry has previously been linked to abnormal tibiofemoral kinematics, suggesting this parameter may be important in restoring normative cartilage loading. However, the relationship between graft geometry and cartilage contact is unknown. METHODS: Static MR images were collected and segmented for eighteen subjects to obtain bone, cartilage, and anterior cruciate ligament geometries for their reconstructed and contralateral knees. The footprint locations and orientation of the anterior cruciate ligament were calculated. Volumetric, dynamic MR imaging was also performed to measure tibiofemoral kinematics, cartilage contact location, and contact sliding velocity while subjects performed loaded knee flexion-extension. Multiple linear regression was used to determine the relationship between non-anatomic graft geometry and asymmetric knee mechanics. FINDINGS: Non-anatomic graft geometry was related to asymmetric knee mechanics, with the sagittal plane graft angle being the best predictor of asymmetry. A more vertical sagittal graft angle was associated with greater anterior tibial translation (ß = 0.11mmdeg, P = 0.049, R2 = 0.22), internal tibial rotation (ß = 0.27degdeg, P = 0.042, R2 = 0.23), and adduction angle (ß = 0.15degdeg, P = 0.013, R2 = 0.44) at peak knee flexion. A non-anatomic sagittal graft orientation was also linked to asymmetries in tibial contact location and sliding velocity on the medial (ß = -4.2mmsdeg, P = 0.002, R2 = 0.58) and lateral tibial plateaus (ß = 5.7mmsdeg, P = 0.006, R2 = 0.54). INTERPRETATION: This study provides evidence that non-anatomic graft geometry is linked to asymmetric knee mechanics, suggesting that restoring native anterior cruciate ligament geometry may be important to mitigate the risk of early cartilage degeneration in these patients.


Assuntos
Fêmur/cirurgia , Imageamento por Ressonância Magnética , Tíbia/cirurgia , Adulto , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Distinções e Prêmios , Fenômenos Biomecânicos , Cartilagem/cirurgia , Feminino , Humanos , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Osteoartrite/cirurgia , Complicações Pós-Operatórias , Período Pós-Operatório , Análise de Regressão , Rotação , Sociedades Médicas , Estados Unidos , Adulto Jovem
10.
Am J Sports Med ; 45(14): 3272-3279, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28903010

RESUMO

BACKGROUND: Although knees that have undergone anterior cruciate ligament reconstruction (ACLR) often exhibit normal laxity on clinical examination, abnormal kinematic patterns have been observed when the joint is dynamically loaded during whole body activity. This study investigated whether abnormal knee kinematics arise with loading under isolated dynamic movements. HYPOTHESIS: Tibiofemoral and patellofemoral kinematics of ACLR knees will be similar to those of the contralateral uninjured control knee during passive flexion-extension, with bilateral differences emerging when an inertial load is applied. STUDY DESIGN: Controlled laboratory study. METHODS: The bilateral knees of 18 subjects who had undergone unilateral ACLR within the past 4 years were imaged by use of magnetic resonance imaging (MRI). Their knees were cyclically (0.5 Hz) flexed passively. Subjects then actively flexed and extended their knees against an inertial load that induced stretch-shortening quadriceps contractions, as seen during the load acceptance phase of gait. A dynamic, volumetric, MRI sequence was used to track tibiofemoral and patellofemoral kinematics through 6 degrees of freedom. A repeated-measures analysis of variance was used to compare secondary tibiofemoral and patellofemoral kinematics between ACLR and healthy contralateral knees during the passive and active extension phases of the cyclic motion. RESULTS: Relative to the passive motion, inertial loading induced significant shifts in anterior and superior tibial translation, internal tibial rotation, and all patellofemoral degrees of freedom. As hypothesized, tibiofemoral and patellofemoral kinematics were bilaterally symmetric during the passive condition. However, inertial loading induced bilateral differences, with the ACLR knees exhibiting a significant shift toward external tibial rotation. A trend toward greater medial and anterior tibial translation was seen in the ACLR knees. CONCLUSION: This study demonstrates that abnormal knee kinematic patterns in ACLR knees emerge during a simple, active knee flexion-extension task that can be performed in an MRI scanner. CLINICAL RELEVANCE: It is hypothesized that abnormal knee kinematics may alter cartilage loading patterns and thereby contribute to increased risk for osteoarthritis. Recent advances in quantitative MRI can be used to detect early cartilage degeneration in ACLR knees. This study demonstrates the feasibility of identifying abnormal ACLR kinematics by use of dynamic MRI, supporting the combined use of dynamic and quantitative MRI to investigate the proposed link between knee motion, cartilage contact, and early biomarkers of cartilage degeneration.


Assuntos
Lesões do Ligamento Cruzado Anterior/reabilitação , Ligamento Cruzado Anterior/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Amplitude de Movimento Articular , Adulto , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Fenômenos Biomecânicos , Ensaios Clínicos Controlados como Assunto , Feminino , Marcha , Humanos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rotação , Tíbia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA