Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113523, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461475

RESUMO

Trapped electron mode (TEM) is the main source of turbulence predicted for the unique operation regime of a flat temperature profile under low-recycling conditions in the LTX-ß tokamak, while ion temperature gradient driven turbulence may also occur with gas fueling from the edge. To investigate mainly TEM scale density fluctuations, a high spatial and time resolution 2D beam emission spectroscopy (BES) diagnostic is being developed. Apart from spatially localized density turbulence measurement, BES can provide turbulence flow and flow shear dynamics. This BES system will be realized using an avalanche photodiode-based camera and narrow band interference filter. The system can acquire data at 2 MHz. Simulations with the Simulation of Spectra (SOS) code indicate that a high signal to noise ratio can be achieved with the proposed system. This will enable sampling the density fluctuations at this high time resolution. The design considerations and system optimization using the SOS code are presented.

2.
Rev Sci Instrum ; 91(2): 026104, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113407

RESUMO

We have demonstrated a vacuum suitcase to transport samples in vacuo to a surface analysis station for characterization of tokamak plasma facing components (PFCs). This technique enables surface analysis at powerful, dedicated stations that are not encumbered by design constraints imposed on them by a tokamak. The vacuum suitcase is an alternative solution to characterizing PFCs using diagnostics that are designed and built around a tokamak. The vacuum suitcase, called the Sample Exposure Probe (SEP), features mobile ultra-high vacuum pumping. Active pumping under high vacuum enables sample transfer between the Lithium Tokamak eXperiment-ß (LTX-ß) and a high resolution X-ray Photoelectron Spectroscopy (XPS) system that is situated close by. A thermocouple inserted in the back of the sample head measures heat flux from the plasma during exposure, and together with a button heater, allows the sample to match the LTX-ß PFCs in high temperature operations. As vacuum conditions are better during transfer and analysis than in the tokamak, less contamination is introduced to the samples. XPS scans on a dedicated analysis station enable peak identification due to higher resolution and signal to noise ratio. A similar probe could be implemented for other fusion devices. The SEP is the first vacuum suitcase implementation for fusion applications that incorporates active pumping.

3.
Rev Sci Instrum ; 89(10): 10C114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399655

RESUMO

An 8-channel, high-k poloidal far-infrared (FIR) scattering system is under development for the National Spherical Torus eXperiment Upgrade (NSTX-U). The 693 GHz poloidal scattering system replaces a 5-channel, 280 GHz high-k toroidal scattering system to study high-k electron density fluctuations on NSTX-U. The FIR probe beam launched from Bay G is aimed toward Bay L, where large aperture optics collect radiation at 8 simultaneous scattering angles ranging from 2° to 15°. The reduced wavelength in the poloidal system results in less refraction, and coupled with a new poloidal scattering geometry, extends measurement of poloidal wavenumbers from the previous limit of 7 cm-1 up to >40 cm-1. Steerable launch optics coupled with receiver optics that can be remotely translated in 5 axes allow the scattering volume to be placed from r/a = 0.1 out to the pedestal region (r/a ∼ 0.99) and allow for both upward and downward scattering to cover different regions of the 2D fluctuation spectrum.

4.
Rev Sci Instrum ; 89(10): 10D118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399896

RESUMO

The Lithium Tokamak eXperiment has undergone an upgrade to LTX-ß, a major part of which is the addition of neutral beam injection (NBI). NBI has allowed for a new charge exchange recombination spectroscopy (CHERS) system to be installed in order to measure impurity concentrations, ion temperature, and toroidal velocity. Previously on LTX measuring these parameters relied on passive spectroscopy and inversion techniques and had large uncertainty. The CHERS system has 52 total views, split into four groups of 13, half facing toward the beam and half symmetrically facing away from the beam, so the background non-beam related emission can be simultaneously subtracted. Both sets of views sample a major radius of 27-59 cm, with resolution through the beam of 1.5-2.5 cm. LTX-ß is expected to have its magnetic axis near 35 cm, with minor radii of 18-23 cm. Three separate spectrometers will be used for the diagnostic, giving the system great flexibility to simultaneously measure emission from multiple impurity lines. The viewing optics are f/1.8, allowing all of the spectrometers to be fully illuminated. Design and calibration of the system as well as the advantages of various configurations of the spectrometers will be highlighted.

5.
Rev Sci Instrum ; 89(10): 10J104, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399897

RESUMO

Magnetic perturbation measurements will be invaluable for characterizing Lithium Tokamak Experiment Beta (LTX-ß) plasmas due to the time-evolving 3D nature of the magnetic fields generated by eddy currents in the vessel and copper shell segments, as well as enhanced MHD instability drive due to newly introduced neutral beam heating. The LTX-ß upgrade includes two new arrays of Mirnov coils: a shell eddy sensor array of two-axis coils distributed over the back surface of one shell segment and a toroidal array of poloidal field coils at the low-field side midplane gap. Evaporative lithium wall-coating and the high temperatures required for liquid lithium wall operation both complicate the implementation of in-vessel diagnostics. While the shell array is protected from lithium exposure, the shell segment to which it is mounted will at times exceed 300 °C. The toroidal array, however, will experience direct line-of-sight exposure to the lithium evaporator as well as close proximity to the hot shell and may also be subject to poorly confined beam-driven fast ions. We describe how the two new Mirnov coil arrays meet these environmental challenges and enhance the LTX-ß diagnostic suite.

6.
Rev Sci Instrum ; 89(10): 10H114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399948

RESUMO

The λ ≈ 1 mm (f = 288 GHz) interferometer for the Lithium Tokamak Experiment-ß (LTX-ß) will use a chirped-frequency source and a centerstack-mounted retro-reflector mirror to provide electron line density measurements along a single radial chord at the midplane. The interferometer is unique in the use of a single source (narrow-band chirped-frequency interferometry) and a single beam splitter for separating and recombining the probe and reference beams. The current work provides a documentation of the interferometry hardware and evaluates the capabilities of the system as a far-forward collective scattering diagnostic. As such, the current optical setup is estimated to have a detection range of 0.4 ≲ k ⊥ ≲ 1.7 cm-1, while an improved layout will extend the upper k ⊥ limit to ∼3 cm-1. Measurements with the diagnostic on LTX are presented, showing interferometry results and scattered signal data. These diagnostics are expected to provide routine measurements on LTX-ß for high frequency coherent density oscillations (e.g., Alfvénic modes during neutral beam injection) as well as for broadband turbulence.

7.
Phys Rev Lett ; 119(1): 015001, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731732

RESUMO

It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (>200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. Reduced recycling was demonstrated by retention of ∼60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ∼200%. Achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

8.
Rev Sci Instrum ; 88(5): 053502, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571454

RESUMO

The frequency-modulated continuous-wave reflectometer on LTX (Lithium Tokamak Experiment) and the data analysis methods used for determining electron density profiles are described. The diagnostic uses a frequency range of 13.1-33.5 GHz, for covering a density range of 0.21-1.4×1013 cm-3 (in O-mode polarization) with a time resolution down to 8 µs. The design of the diagnostic incorporates the concept of an "optimized" source frequency sweep, which minimizes the large variation in the intermediate frequency signal due to a long dispersive transmission line. The quality of the raw data is dictated by the tuning characteristics of the microwave sources, as well as the group delay ripple in the transmission lines, which can generate higher-order nonlinearities in the frequency sweep. Both effects are evaluated for our diagnostic and best practices are presented for minimizing "artifacts" generated in the signals. The quality of the reconstructed profiles is also improved using two additional data analysis methods. First, the reflectometer data are processed as a radar image, where clutter due to echoes from the wall and backscattering from density fluctuations can be easily identified and removed. Second, a weighed least-squares lamination algorithm POLAN (POLynomial ANalysis) is used to reconstruct the electron density profile. Examples of density profiles in LTX are presented, along with comparisons to measurements from the Thomson scattering and the λ = 1 mm interferometer diagnostics.

9.
Rev Sci Instrum ; 87(11): 11D605, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910392

RESUMO

A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ∼10-15 ms is expected.

10.
Rev Sci Instrum ; 87(11): 11D624, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910428

RESUMO

A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength.

11.
Rev Sci Instrum ; 87(11): 11E114, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910494

RESUMO

The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment-Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

12.
Rev Sci Instrum ; 87(11): 11D403, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910555

RESUMO

A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of ±0.22 eV in position and ±248 s-1 eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas.

13.
Rev Sci Instrum ; 87(11): 11D614, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910593

RESUMO

We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other lines of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Our measurements show that the responsivity between about 120 and 300 Švaries by factor of ∼30.

14.
Rev Sci Instrum ; 87(5): 053507, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250423

RESUMO

An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 µs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations.

15.
Rev Sci Instrum ; 85(11): 11D630, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430206

RESUMO

We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li(+) or Li(2 +), which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li(+) and 65 eV for the 135 Å Li(2 +) lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

16.
Rev Sci Instrum ; 85(11): 11D810, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430223

RESUMO

In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

17.
Rev Sci Instrum ; 85(11): 11D835, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430248

RESUMO

The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

18.
Rev Sci Instrum ; 85(11): 11E807, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430372

RESUMO

This paper describes aspects of magnetic diagnostics for realtime control in National Spherical Torus Experiment-Upgrade (NSTX-U). The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current Rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

19.
Rev Sci Instrum ; 85(11): 11E824, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430389

RESUMO

A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

20.
Rev Sci Instrum ; 83(10): 10D520, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126861

RESUMO

We report on upgrades to the flat-field grazing-incidence grating spectrometers X-ray and Extreme Ultraviolet Spectrometer (XEUS) and Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), at the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. XEUS employs a variable space grating with an average spacing of 2400 lines/mm and covers the 9-64 Å wavelength band, while LoWEUS has an average spacing of 1200 lines/mm and is positioned to monitor the 90-270 Å wavelength band. Both spectrometers have been upgraded with new cameras that achieve 12.5 ms time resolution. We demonstrate the new time resolution capability by showing the time evolution of iron in the NSTX plasma.


Assuntos
Física/instrumentação , Espectrofotometria Ultravioleta/instrumentação , Elétrons , Gases em Plasma/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...