Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 2132, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875377

RESUMO

Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.


Assuntos
Proteínas de Arabidopsis/genética , Germinação/genética , Fosfoproteínas Fosfatases/genética , Dormência de Plantas/genética , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Heme/metabolismo , Mutação , Fosfoproteínas Fosfatases/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
2.
Zoological Lett ; 1: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605050

RESUMO

INTRODUCTION: Diverse insects and other organisms are associated with microbial symbionts, which often significantly contribute to growth and survival of their hosts and/or drastically affect phenotypes of their hosts in a variety of ways. Sodalis glossinidius was first identified as a facultative bacterial symbiont of tsetse flies, and recent studies revealed that Sodalis-allied bacteria encompass diverse ecological niches ranging from free-living bacteria through facultative symbionts to obligate symbionts associated with a diverse array of insects. Despite potential ecological and evolutionary relevance of the Sodalis symbionts, their infection prevalence in natural insect populations has been poorly investigated. RESULTS: Here we surveyed diverse stinkbugs and allied terrestrial heteropteran bugs, which represented 17 families, 77 genera, 108 species, 310 populations and 960 individuals, for infection with the Sodalis symbionts. Diagnostic PCR detected relatively low infection frequencies of the Sodalis symbionts: 13.6% (14/103) of the species, 7.5% (22/295) of the populations, and 4.3% (35/822) of the individuals of the stinkbugs except for those belonging to the family Urostylididae. Among the urostylidid stinkbugs, strikingly, the Sodalis symbionts exhibited very high infection frequencies: 100% (5/5) of the species, 100% (15/15) of the populations, and 94.2% (130/138) of the individuals we examined. Molecular phylogenetic analysis based on bacterial 16S rRNA gene sequences revealed that all the symbionts were placed in the clade of Sodalis-allied bacteria while the symbiont phylogeny did not reflect the systematics of their stinkbug hosts. Notably, the Sodalis symbionts of the urostylidid stinkbugs were not clustered with the Sodalis symbionts of the other stinkbug groups on the phylogeny, suggesting their distinct evolutionary trajectories. CONCLUSIONS: The relatively low infection frequency and the overall host-symbiont phylogenetic incongruence suggest that the Sodalis symbionts are, in general, facultative symbiotic associates in the majority of the stinkbug groups. On the other hand, it is conceivable, although speculative, that the Sodalis symbionts may play some substantial biological roles for their host stinkbugs of the Urostylididae.

3.
Curr Biol ; 24(20): 2465-70, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25264255

RESUMO

Maternal investment for offspring's growth and survival is widespread among diverse organisms. Vertical symbiont transmission via maternal passage is also pivotal for offspring's growth and survival in many organisms. Hence, it is expected that vertical symbiont transmission may coevolve with various organismal traits concerning maternal investment in offspring. Here we report a novel phenotypic syndrome entailing morphological, histological, behavioral, and ecological specializations for maternal investment and vertical symbiont transmission in stinkbugs of the family Urostylididae. Adult females develop huge ovaries exaggerated for polysaccharide excretion, possess novel ovipositor-associated organs for vertical transmission of a bacterial symbiont ("Candidatus Tachikawaea gelatinosa"), and lay eggs covered with voluminous symbiont-supplemented jelly. Newborns hatch in midwinter, feed solely on the jelly, acquire the symbiont, and grow during winter. In spring, the insects start feeding on plant sap, wherein the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the host's diet. The reduced symbiont genome and host-symbiont cospeciation indicate their obligate association over evolutionary time. Experimental deprivation of the jelly results in nymphal mortality, whereas restoration of the jelly leads to recovered nymphal growth, confirming that the jelly supports nymphal growth in winter. Chemical analyses demonstrate that the galactan-based jelly contains a sufficient quantity of amino acids to sustain nymphal growth to the third instar. The versatile biological roles of the symbiont-containing egg-covering jelly highlight intricate evolutionary interactions between maternal resource investment and vertical symbiont transmission, which are commonly important for offspring's growth, survival, and ecological adaptation.


Assuntos
Insetos/microbiologia , Insetos/fisiologia , Óvulo/microbiologia , Animais , Feminino , Humanos , Reprodução/fisiologia , Estações do Ano , Simbiose
4.
Zoolog Sci ; 28(3): 169-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21385056

RESUMO

Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of Eucorysses grandis, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, neither closely related to the gut symbiont of another scutellerid stinkbug, Cantao ocellatus, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracelluarly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A Sodalis-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.


Assuntos
Bactérias/classificação , Bactérias/genética , Hemípteros/microbiologia , Simbiose/fisiologia , Animais , Feminino , Masculino , Filogenia
5.
Appl Environ Microbiol ; 76(11): 3486-94, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20400564

RESUMO

Symbiotic associations with midgut bacteria have been commonly found in diverse phytophagous heteropteran groups, where microbiological characterization of the symbiotic bacteria has been restricted to the stinkbug families Acanthosomatidae, Plataspidae, Pentatomidae, Alydidae, and Pyrrhocoridae. Here we investigated the midgut bacterial symbiont of Cantao ocellatus, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified from the insects of different geographic origins. The bacterium was detected in all 116 insects collected from 9 natural host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, not closely related to gut symbionts of other stinkbugs. Diagnostic PCR and in situ hybridization demonstrated that the bacterium is extracellularly located in the midgut 4th section with crypts. Electron microscopy of the crypts revealed a peculiar histological configuration at the host-symbiont interface. Egg sterilization experiments confirmed that the bacterium is vertically transmitted to stinkbug nymphs via egg surface contamination. In addition to the gut symbiont, some individuals of C. ocellatus harbored another bacterial symbiont in their gonads, which was closely related to Sodalis glossinidius, the secondary endosymbiont of tsetse flies. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.


Assuntos
Gammaproteobacteria/classificação , Gammaproteobacteria/fisiologia , Heterópteros/microbiologia , Simbiose , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Gammaproteobacteria/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/ultraestrutura , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA