Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virchows Arch ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713384

RESUMO

The proposed role of CDH1 (E-cadherin gene) methylation as a mechanism of gene inactivation in invasive lobular carcinoma (ILC) remains inconclusive. For many years, CDH1 promoter hypermethylation has been regarded as a mechanism for gene inactivation in ILC. However, this assumption has primarily relied on non-quantitative assays, which have reported CDH1 methylation frequencies ranging from 26 to 93% at CpG sites within the island region. Few studies employing quantitative methods and covering CpG island shores, regions of relatively low CpG density situated proximal to conventional promoter CpGs, have been conducted, revealing lower percentages of methylation ranging from 0 to 51%. Therefore, using the quantitative pyrosequencing method, we examined CDH1 methylation in the island region and shores in E-cadherin deficient ILC cases (15 with CDH1 mutation and 22 non-mutated), 19 cases of invasive breast carcinomas non-special type (IBC-NSTs), and five cases of usual ductal hyperplasia (UDH). Our analysis revealed CDH1 methylation frequencies ranging from 3 to 64%, with no significant increase in methylation levels in any group of ILCs (median = 12%) compared to IBC-NST (median = 15%). In addition, considering the poorly studied association between the number of tumor-infiltrating lymphocytes (TILs) and CDH1 methylation in breast cancer, we undertook a thorough analysis within our dataset. Our findings revealed a positive correlation between CDH1 methylation and the presence of TILs (r = 0.5; p-value < 0.05), shedding light on an aspect of breast cancer biology warranting further investigation. These findings challenge CDH1 methylation as a CDH1 inactivation mechanism in ILC and highlight TILs as a potential confounding factor in gene methylation.

3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216235

RESUMO

Due to abundant stroma and extracellular matrix, accompanied by lack of vascularization, pancreatic ductal adenocarcinoma (PDAC) is characterized by severe hypoxia. Epigenetic regulation is likely one of the mechanisms driving hypoxia-induced epithelial-to-mesenchymal transition (EMT), responsible for PDAC aggressiveness and dismal prognosis. To verify the role of DNA methylation in this process, we assessed gene expression and DNA methylation changes in four PDAC cell lines. BxPC-3, MIA PaCa-2, PANC-1, and SU.86.86 cells were exposed to conditioned media containing cytokines and inflammatory molecules in normoxic and hypoxic (1% O2) conditions for 2 and 6 days. Cancer Inflammation and Immunity Crosstalk and Human Epithelial to Mesenchymal Transition RT² Profiler PCR Arrays were used to identify top deregulated inflammatory and EMT-related genes. Their mRNA expression and DNA methylation were quantified by qRT-PCR and pyrosequencing. BxPC-3 and SU.86.86 cell lines were the most sensitive to hypoxia and inflammation. Although the methylation of gene promoters correlated with gene expression negatively, it was not significantly influenced by experimental conditions. However, DNA methyltransferase inhibitor decitabine efficiently decreased DNA methylation up to 53% and reactivated all silenced genes. These results confirm the role of DNA methylation in EMT-related gene regulation and uncover possible new targets involved in PDAC progression.


Assuntos
Carcinoma Ductal Pancreático/genética , Metilação de DNA/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Epigênese Genética/genética , Humanos , Neoplasias Pancreáticas/patologia , Prognóstico , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008529

RESUMO

BACKGROUND: Dissemination of breast cancer (BC) cells through the hematogenous or lymphogenous vessels leads to metastatic disease in one-third of BC patients. Therefore, we investigated the new prognostic features for invasion and metastasis. METHODS: We evaluated the expression of miRNAs and epithelial-to-mesenchymal transition (EMT) genes in relation to CDH1/E-cadherin changes in samples from 31 patients with invasive ductal BC including tumor centrum (TU-C), tumor invasive front (TU-IF), lymph node metastasis (LNM), and CD45-depleted blood (CD45-DB). Expression of miRNA and mRNA was quantified by RT-PCR arrays and associations with clinico-pathological characteristics were statistically evaluated by univariate and multivariate analysis. RESULTS: We did not verify CDH1 regulating associations previously described in cell lines. However, we did detect extremely high ZEB1 expression in LNMs from patients with distant metastasis, but without regulation by miR-205-5p. Considering the ZEB1 functions, this overexpression indicates enhancement of metastatic potential of lymphogenously disseminated BC cells. In CD45-DB samples, downregulated miR-205-5p was found in those expressing epithelial and/or mesenchymal markers (CTC+) that could contribute to insusceptibility and survival of hematogenously disseminated BC cells mediated by increased expression of several targets including ZEB1. CONCLUSIONS: miR-205-5p and potentially ZEB1 gene are promising candidates for markers of metastatic potential in ductal BC.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Regulação para Baixo/genética , MicroRNAs/genética , Regulação para Cima/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Regiões 3' não Traduzidas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Pessoa de Meia-Idade
5.
Oncotarget ; 8(44): 77369-77384, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100393

RESUMO

Deregulated expression of microRNAs has the oncogenic or tumor suppressor function in cancer. Since miRNAs in plasma are highly stable, their quantification could contribute to more precise cancer diagnosis, prognosis and therapy prediction. We have quantified expression of seven oncomiRs, namely miR-17/92 cluster (miR-17, miR-18a, miR-19a and miR-20a), miR-21, miR-27a and miR-155, in plasma of 137 breast cancer (BC) patients. We detected down-regulation of six miRNAs in patients with invasive BC compared to controls; however, only miR-20a and miR-27a down-regulations were statistically significant. Comparing miRNA expression between early and advanced stages of BC, we observed statistically significant decrease of miR-17 and miR-19a. We identified down-regulation of miR-17 and miR-20a in patients with clinical parameters of advanced BC (lymph node metastasis, tumor grade 3, circulating tumor cells, higher Ki-67-related proliferation, hormone receptor negativity and HER2 amplification), when compared to controls. Moreover, decreased level of miR-17 was found from low to high grade. Therefore, miR-17 could represent an indicator of advanced BC. Down-regulated miR-27a expression levels were observed in all clinical categories regardless of tumor progression. Hence, miR-27a could be used as a potential diagnostic marker for BC. Our data indicates that any changes in miRNA expression levels in BC patients in comparison to controls could be highly useful for cancer-associated pathology discrimination. Moreover, dynamics of miRNA expression changes could be used for BC progression monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...