Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101256, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38774582

RESUMO

Glycosylation of biopharmaceuticals can affect their safety and efficacy. Glycans can occur on recombinant adeno-associated viruses (rAAVs) that are used for gene therapy; however, the types of glycans that attach to rAAVs are controversial. Here, we conducted lectin microarray analyses on six rAAV serotype 6 (rAAV6) preparations that were produced differently. We demonstrate that O-glycans considered to be attached to rAAV6 were recognized by Agaricus bisporus agglutinin (ABA) and that N-glycans were detected in rAAV6 purified without affinity chromatography. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the N-glycans detected in rAAV6 were derived from host cell proteins. A combination of ABA-based fractionation and LC-MS/MS revealed that rAAV6 was O-glycosylated with the mucin-type glycans, O-GalNAc (Tn antigen), and mono- and di-sialylated Galß1-3GalNAc (T antigen) at S156, T162, T194, and T201 in viral protein (VP) 2 and with O-GlcNAc at T242 in VP3. The mucin-type O-glycosylated rAAV6 particles were 0.1%-1% of total particles. Further physicochemical and biological analyses revealed that mucin-type O-glycosylated rAAV6 had a lower ratio of VP1 to VP2/VP3, resulting in a lower transduction efficiency both in vitro and in vivo compared with rAAV6 without mucin-type O-glycans. This report details conclusive evidence of rAAV glycosylation and its impact on rAAV-based therapeutics.

2.
J Proteome Res ; 23(4): 1408-1419, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38536229

RESUMO

The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted public health globally. As the glycosylation of viral envelope glycoproteins is strongly associated with their immunogenicity, intensive studies have been conducted on the glycans of the glycoprotein of SARS-CoV-2, the spike (S) protein. Here, we conducted intensive glycoproteomic analyses of the SARS-CoV-2 S protein of ancestral and γ-variant strains using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarrays (LMA). Our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, identified 1448 (ancestral strain) and 1785 (γ-variant strain) site-specific glycan compositions, respectively. Asparagine at amino acid position 20 (N20) is mainly glycosylated within two successive potential glycosylation sites, N17 and N20, of the γ-variant S protein; however, we found low-frequency glycosylation at N17. Our novel approaches, glycostem mapping and glycoleaf scoring, also illustrate the moderately branched/extended, highly fucosylated, and less sialylated natures of the glycoforms of S proteins. Subsequent LMA analysis emphasized the intensive end-capping of glycans by Lewis fucoses, which complemented the glycoproteomic features. These results illustrate the high-resolution glycoproteomic features of the SARS-CoV-2 S protein, contributing to vaccine design and understanding of viral protein synthesis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Lectinas , Polissacarídeos/química , Espectrometria de Massas
3.
PLoS One ; 17(8): e0273513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36006984

RESUMO

Glycosylation is one of the most important post-translational modifications of cell surface proteins involved in the proliferation, metastasis and treatment resistance of cancer cells. However, little is known about the role of glycosylation as the mechanism of breast cancer cell resistance to endocrine therapy. Herein, we aimed to identify the glycan profiles of tamoxifen-resistant human breast cancer cells, and their potential as predictive biomarkers for endocrine therapy. We established tamoxifen-resistant cells from estrogen receptor-positive human breast cancer cell lines, and their membrane-associated proteins were subjected to lectin microarray analysis. To confirm differential lectin binding to cellular glycoproteins, we performed lectin blotting analyses after electrophoretic separation of the glycoproteins. Mass spectrometry of the tryptic peptides of the lectin-bound glycoproteins was further conducted to identify glycoproteins binding to the above lectins. Finally, expression of the glycans that were recognized by a lectin was investigated using clinical samples from patients who received tamoxifen treatment after curative surgery. Lectin microarray analysis revealed that the membrane fractions of tamoxifen-resistant breast cancer cells showed increased binding to Wisteria floribunda agglutinin (WFA) compared to tamoxifen-sensitive cells. Glycoproteins seemed to be responsible for the differential WFA binding and the results of mass spectrometry revealed several membrane glycoproteins, such as CD166 and integrin beta-1, as candidates contributing to increased WFA binding. In clinical samples, strong WFA staining was more frequently observed in patients who had developed distant metastasis during tamoxifen treatment compared with non-relapsed patients. Therefore, glycans recognized by WFA are potentially useful as predictive markers to identify the tamoxifen-resistant and relapse-prone subset of estrogen receptor-positive breast cancer patients.


Assuntos
Neoplasias da Mama , Tamoxifeno , Antígenos de Neoplasias , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Feminino , Glicoproteínas/metabolismo , Humanos , Recidiva Local de Neoplasia , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Receptores de Estrogênio , Receptores de N-Acetilglucosamina/metabolismo , Tamoxifeno/farmacologia
4.
Oncogene ; 41(38): 4385-4396, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970887

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death and contributes to tumor rejection by cytotoxic lymphocytes in cancer immunosurveillance and immunotherapy. TRAIL and TRAIL receptor agonists have garnered wide popularity as promising agents for cancer therapy. We previously demonstrated that the loss of fucosylation in cancer cells impairs TRAIL sensitivity; however, the precise structures of the fucosylated glycans that regulate TRAIL sensitivity and their carrier molecules remain elusive. Herein, we observed that Lewis glycans among various fucosylated glycans positively regulate TRAIL-induced cell death. Specifically, Lewis glycans on lacto/neolacto glycosphingolipids, but not glycoproteins including TRAIL receptors, enhanced TRAIL-induced formation of the cytosolic caspase 8 complex, without affecting the formation of the membranous receptor complex. Furthermore, type I Lewis glycan expression in colon cancer cell lines and patient-derived cancer organoids was positively correlated with TRAIL sensitivity. These findings provide novel insights into the regulatory mechanism of TRAIL-induced cell death and facilitate the identification of novel predictive biomarkers for TRAIL-related cancer therapies in future.


Assuntos
Neoplasias , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/metabolismo , Glicoesfingolipídeos/farmacologia , Humanos , Ligantes , Glicoproteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Transpl Int ; 35: 10248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401036

RESUMO

Isohemagglutinin assays employing red blood cells (RBCs) are the most common assays used to measure antibody titer in ABO-incompatible kidney transplantation (ABOi KTx). However, ABO antigens expressed on RBCs are not identical to those of kidney and antibody titers do not always correlate with clinical outcome. We previously reported that CD31 was the main protein linked to ABO antigens on kidney endothelial cells (KECs), which was different from those on RBCs. We developed a new method to measure antibody titer using a microarray of recombinant CD31 (rCD31) linked to ABO antigens (CD31-ABO microarray). Mass spectrometry analysis suggested that rCD31 and native CD31 purified from human kidney had similar ABO glycan. To confirm clinical use of CD31-ABO microarray, a total of 252 plasma samples including volunteers, hemodialysis patients, and transplant recipients were examined. In transplant recipients, any initial IgG or IgM antibody intensity >30,000 against the donor blood type in the CD31-ABO microarray showed higher sensitivity, specificity, positive predictive value, and negative predictive value of AABMR, compared to isohemagglutinin assays. Use of a CD31-ABO microarray to determine antibody titer specifically against ABO antigens expressed on KECs will contribute to precisely predicting AABMR or preventing over immunosuppression following ABOi KTx.


Assuntos
Transplante de Rim , Sistema ABO de Grupos Sanguíneos , Anticorpos , Incompatibilidade de Grupos Sanguíneos , Carboidratos , Células Endoteliais , Rejeição de Enxerto , Humanos , Transplante de Rim/métodos , Molécula-1 de Adesão Celular Endotelial a Plaquetas
6.
Front Bioeng Biotechnol ; 10: 774786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198542

RESUMO

Cypridina noctiluca luciferase (CLuc) is a secreted luminescent protein that reacts with its substrate (Cypridina luciferin) to emit light. CLuc is known to be a thermostable protein and has been used for various research applications, including in vivo imaging and high-throughput reporter assays. Previously, we produced a large amount of recombinant CLuc for crystallographic analysis. However, this recombinant protein did not crystallize, probably due to heterogeneous N-glycan modifications. In this study, we produced recombinant CLuc without glycan modifications by introducing mutations at the N-glycan modification residues using mammalian Expi293F cells, silkworms, and tobacco Bright Yellow-2 cells. Interestingly, recombinant CLuc production depended heavily on the expression hosts. Among these selected hosts, we found that Expi293F cells efficiently produced the recombinant mutant CLuc without significant effects on its luciferase activity. We confirmed the lack of N-glycan modifications for this mutant protein by mass spectrometry analysis but found slight O-glycan modifications that we estimated were about 2% of the ion chromatogram peak area for the detected peptide fragments. Moreover, by using CLuc deletion mutants during the investigation of O-glycan modifications, we identified amino acid residues important to the luciferase activity of CLuc. Our results provide invaluable information related to CLuc function and pave the way for its crystallographic analysis.

7.
Anal Chem ; 94(5): 2476-2484, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044763

RESUMO

Wisteria floribunda agglutinin (WFA)-reactive ceruloplasmin (CP) is a candidate marker for ovarian clear cell carcinoma (CCC) reported in our previous paper. Herein, a new measurement system was developed to investigate its potential as a serum marker for CCC. Site-specific glycome analysis using liquid chromatography/mass spectrometry showed that WFA-CP from CCC binds to WFA via the GalNAcß1,4GlcNAc (LDN) structure. We used mutant recombinant WFA (rWFA), which has a high specificity to the LDN structure, instead of native WFA, to increase the specificity of the serum sample measurement. To improve the sensitivity, we used a surface plasmon field-enhanced fluorescence spectroscopy immunoassay system, which is approximately 100 times more sensitive than the conventional sandwich enzyme-linked immunosorbent assay system. With these two improvements, the specificity and sensitivity of the serum rWFA-CP measurement were dramatically improved, clearly distinguishing CCC from endometrioma, from which CCC originates. This rWFA-CP assay can be used clinically for the serodiagnosis of early-stage CCC, which is difficult to detect with existing serum markers.


Assuntos
Carcinoma , Endometriose , Antígenos de Neoplasias , Biomarcadores , Ceruloplasmina/metabolismo , Endometriose/diagnóstico , Humanos , Cirrose Hepática/diagnóstico , Lectinas de Plantas/química , Receptores de N-Acetilglucosamina/metabolismo
8.
Biochim Biophys Acta Gen Subj ; 1866(1): 130020, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582939

RESUMO

BACKGROUND: Hepatitis B virus (HBV), which causes hepatitis, liver cirrhosis, and hepatocellular carcinoma, is a global human health problem. HBV contains three envelope proteins, S-, M-, and L-hepatitis B surface antigen (HBsAg). We recently found that O-glycosylated M-HBsAg, reactive with jacalin lectin, is one of the primary components of HBV DNA-containing virus particles. Thus, we aimed to analyze and target the glycosylation of HBsAg. METHODS: HBsAg prepared from the serum of Japanese patients with HBV were analyzed using mass spectrometry. The glycopeptide modified with O-glycan was generated and used for immunization. The specificity of the generated antibody and the HBV infection inhibition activity was examined. RESULTS: Mass spectrometry analysis revealed that T37 and/or T38 on M-HBsAg of genotype C were modulated by ±NeuAc(α2,3)Gal(ß1,3)GalNAc. Chemically and enzymatically synthesized O-glycosylated peptide (Glyco-PS2) induced antibodies that recognize mainly PreS2 in M-HBsAg not in L-HBsAg, whereas the non-glycosylated peptide (PS2) induced antisera recognizing L-HBsAg but not O-glycosylated M-HBsAg. The removal of O-glycan from M-HBsAg partly decreased the reactivity of the Glyco-PS2 antibody, suggesting that peptide part was also recognized by the antibody. The antibody further demonstrated the inhibition of HBV infection in human hepatic cells in vitro. CONCLUSIONS: Glycosylation of HBsAg occurs differently in different HBsAgs in a site-specific manner. The new Glyco-PS2 antibody, recognizing O-glycosylated M-HBsAg of genotype C, could inhibit HBV infection. GENERAL SIGNIFICANCE: The detailed analysis of HBsAg identified different glycosylations of HBV surface. The glycosylated peptide based on mass spectrometry analysis showed higher potential to induce functional antibody against HBV.


Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Hepatite B/imunologia , Anticorpos/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Glicosilação , Células Hep G2 , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Humanos , Fígado/metabolismo , Peptídeos/imunologia
9.
Glycobiology ; 31(10): 1268-1278, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34192302

RESUMO

The extent of liver fibrosis predicts prognosis and is important for determining treatment strategies for chronic hepatitis. During the fibrosis progression, serum levels of Mac2 binding protein (M2BP) increase and the N-glycan structure changes to enable binding to Wisteria floribunda agglutinin (WFA) lectin. As a novel diagnostic marker, glycosylation isomer of M2BP (M2BPGi) has been developed. However, its glycan structures recognized by WFA are unclear. In this study, we analyzed site-specific N-glycan structures of serum M2BP using Glyco-RIDGE (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile) method. We evaluated five sample types: (1) M2BP immunoprecipitated from normal healthy sera (NHS-IP(+)), (2) M2BP immunoprecipitated from sera of patients with liver cirrhosis (stage 4; F4-IP(+)), (3) M2BP captured with WFA from serum of patients with liver cirrhosis (stage 4; F4-WFA(+)), (4) recombinant M2BP produced by HEK293 cells (rM2BP) and (5) WFA-captured rM2BP (rM2BP-WFA(+)). In NHS-IP(+) M2BP, bi-antennary N-glycan was the main structure, and LacNAc extended to its branches. In F4-IP(+) M2BP, many branched structures, including tri-antennary and tetra-antennary N-glycans, were found. F4-WFA(+) showed a remarkable increase in branched structures relative to the quantity before enrichment. In recombinant M2BP, both no sialylated-LacdiNAc and -branched LacNAc structures were emerged. The LacdiNAc structure was not found in serum M2BP. Glycosidase-assisted HISCL assays suggest that reactivity with WFA of both serum and recombinant M2BP depends on unsialylated and branched LacNAc and in part of recombinant depends on LacdiNAc. On M2BPGi, the highly branched LacNAc, probably dense cluster of LacNAc, would be recognized by WFA.


Assuntos
Antígenos de Neoplasias/química , Biomarcadores Tumorais/química , Cirrose Hepática/sangue , Lectinas de Plantas/química , Polissacarídeos/química , Receptores de N-Acetilglucosamina/química , Antígenos de Neoplasias/sangue , Biomarcadores Tumorais/sangue , Células HEK293 , Voluntários Saudáveis , Humanos , Lectinas de Plantas/sangue , Polissacarídeos/sangue , Análise Serial de Proteínas , Receptores de N-Acetilglucosamina/sangue , Proteínas Recombinantes/sangue , Proteínas Recombinantes/química
11.
Biochim Biophys Acta Gen Subj ; 1864(8): 129635, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417172

RESUMO

BACKGROUND: Mucin-type O-glycosylation (referred to as O-GalNAc glycosylation) is the most abundant O-glycosylation on membrane and secretory proteins. Recently several evidences suggest that nuclear or cytoplasmic proteins might also have O-GalNAc glycosylation. However, what nucleocytoplasmic proteins are O-GalNAc glycosylated and what the biological function of this modification in cells are still poorly understood. Previously, we reported the tumor suppressor p53 could be O-GalNAc glycosylated in vitro. To investigate the existence and function of O-GalNAc glycosylation on nucleocytoplasmic proteins in cell, p53 as a representative nucleocytoplasmic protein was studied. METHODS: Using lectin blotting with GalNAc specific lectins, enzymatic treatments with O-GlcNAcase, core 1 ß1, 3-galactosyltransferase and O-glycosidase, and metabolic labeling with un-O-acetylated GalNAz in UDP-Gal/UDP-GalNAc 4-epimerase (GALE) knockout cells, we validated the O-GalNAc glycosylation on p53. Using mass spectrometry analysis and site-directed mutagenesis, we identified the glycosylated sites and studied the functions of O-GalNAc glycosylation on p53. RESULTS: The p53 was O-GalNAc glycosylated in cells. Ser121 residue was one of the glycosylated sites on p53. The O-GalNAc glycosylation at Ser121 was associated with the stability and activity of p53. CONCLUSIONS: These results revealed that the O-GalNAc glycosylation was a novel modification on p53. GENERAL SIGNIFICANCE: Our study provided a pilot evidence that the O-GalNAc glycosylation existed on nucleocytoplasmic protein.


Assuntos
Acetilgalactosamina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/genética , Células Cultivadas , Glicosilação , Células HEK293 , Humanos , Espectrometria de Massas , Polissacarídeos/análise , Polissacarídeos/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Anal Chem ; 91(17): 11162-11169, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31405276

RESUMO

A quantitative description of glyco-alteration/differences in diseases can lead to the development of a diagnostic agent for use in vitro to monitor the degree of change in target glycoproteins. Analytical systems have been developed along with the progress of omics-oriented technologies. For clinical implementation, their full automation is required with an apparatus that is simple to operate. Here, we report an automatic analysis system for quantitative characterization of glyco-alteration/differences that depends on the unique strategy of "bead arrays in a single tip." The alternative lectin array can obtain a minimum characterization of the glycan profile for nanogram quantities of an endogenous glycoprotein. A simple autopipetting robot produces the precise chemiluminescence detection of glycan-lectin interactions with a wide dynamic range that is superior to fluorescence-based lectin arrays. The tip-based array format enables automatic glycan profiling from sample pretreatment to detection with low variation and linear detection, which may facilitate the use of this lectin array in clinical practice.


Assuntos
Automação , Glicoproteínas/análise , Lectinas/química , Fluorescência , Espectrometria de Massas , Análise em Microsséries
13.
Ann Rheum Dis ; 78(11): 1488-1496, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31300460

RESUMO

OBJECTIVE: An increased proportion of circulating follicular helper T (Tfh) cells was reported in rheumatoid arthritis (RA), but it remains uncertain how Tfh cells affect antibody hyposialylation. We investigated the regulation of autoantibody hyposialylation by Tfh cells in RA using murine model. METHODS: Behaviours of Tfh cells and their function on B cell promotion were analysed. Change of arthritogenicity and sialylation of autoantibodies during the course of arthritis was examined by mass spectrometry. Tfh-mediated regulation of hyposialylation was investigated, and the responsible cell surface molecule was specified both in vitro and in vivo. The relation between circulating Tfh cells and hyposialylation was analysed in patients with RA. RESULTS: An increase in Tfh, particularly interleukin-17 producing Tfh (Tfh17) cells, at the onset of arthritis and their enhancement of autoantibody production were found. Autoantibodies at the onset phase demonstrated stronger inflammatory properties than those at the resolution phase, and mass spectrometric analysis revealed their difference in sialylation. In vitro coculture showed enhanced hyposialylation by the Tfh cells via OX40, which was highly expressed in the Tfh and Tfh17 cells. Blockade of OX40 prevented the development of arthritis with reduction in Tfh17 cells and recovery of autoantibody sialylation. Analysis of patients with RA showed abundance of OX40-overexpressing Tfh17 cells, and their proportion correlated negatively with the expression of α2,6-sialyltransferase 1, an enzyme responsible for sialylation. CONCLUSIONS: OX40 expressed on Tfh cells can regulate autoantibody sialylation and play a crucial role in the development of autoimmune arthritis.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Receptores OX40/metabolismo , Ácidos Siálicos/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Modelos Animais de Doenças , Imunidade Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos DBA
14.
Lab Invest ; 99(11): 1749-1765, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31253865

RESUMO

Cardiac fibrosis is a typical phenomenon in failing hearts for most cardiac diseases, including dilated cardiomyopathy (DCM), and its specific detection and quantification are crucial for the analysis of cardiac remodeling. Since cardiac fibrosis is characterized by extensive remodeling of the myocardial extracellular matrix (ECM), in which glycoproteins are the major components, we assumed that fibrosis-related alterations in the cardiac glycome and glycoproteome would be suitable targets for the detection of cardiac fibrosis. Here, we compared protein glycosylation between heart tissues of normal and DCM model mice by laser microdissection-assisted lectin microarray. Among 45 lectins, Wisteria floribunda agglutinin (WFA) was selected as the most suitable lectin for staining cardiac fibrotic tissues. Although the extent of WFA staining was highly correlated (r > 0.98) with that of picrosirius red staining, a common collagen staining method, WFA did not bind to collagen fibers. Further histochemical analysis with N-glycosidase revealed that WFA staining of fibrotic tissues was attributable to the binding of WFA to N-glycoproteins. Using a mass spectrometry-based approach, we identified WFA-binding N-glycoproteins expressed in DCM hearts, many of which were fibrogenesis-related ECM proteins, as expected. In addition, the identified glycoproteins carrying WFA-binding N-glycans were detected only in DCM hearts, suggesting their cooperative glycosylation alterations with disease progression. Among these WFA-binding ECM N-glycoproteins, co-localization of the collagen α6(VI) chain protein and WFA staining in cardiac tissue sections was confirmed with a double-staining analysis. Collectively, these results indicate that WFA staining is more suitable for the quantitative assessment of cardiac fibrogenic activity than current collagen staining methods. Furthermore, given that plasma WFA-binding glycoprotein levels were significantly correlated with the echocardiographic parameters for left ventricular remodeling, cardiac WFA-binding glycoproteins are candidate circulating glyco-biomarkers for the quantification and monitoring of cardiac fibrogenesis.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Lectinas de Plantas , Receptores de N-Acetilglucosamina , Coloração e Rotulagem/métodos , Animais , Colágeno Tipo VI/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Lectinas de Plantas/farmacocinética , Polissacarídeos/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
15.
J Allergy Clin Immunol ; 144(3): 698-709.e9, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31125592

RESUMO

BACKGROUND: One of the pathognomonic features of asthma is epithelial hyperproduction of mucus, which is composed of a series of glycoproteins; however, it remains unclear how glycosylation is induced in lung epithelial cells from asthmatic patients and how glycan residues play a role in the pathogenesis of asthma. OBJECTIVE: The objective of this study was to explore comprehensive epithelial glycosylation status induced by allergic inflammation and reveal its possible role in the pathogenesis of asthma. METHODS: We evaluated the glycosylation status of lung epithelium using a lectin microarray. We next searched for molecular mechanisms underlying epithelial glycosylation. We also examined whether epithelial glycosylation is involved in induction of allergic inflammation. RESULTS: On allergen inhalation, lung epithelial cells were heavily α(1,2)fucosylated by fucosyltransferase 2 (Fut2), which was induced by the IL-13-signal transducer and activator of transcription 6 pathway. Importantly, Fut2-deficient (Fut2-/-) mice, which lacked lung epithelial fucosylation, showed significantly attenuated eosinophilic inflammation and airway hyperresponsiveness in house dust mite (HDM)-induced asthma models. Proteome analyses and immunostaining of the HDM-challenged lung identified that complement C3 was accumulated in fucosylated areas. Indeed, Fut2-/- mice showed significantly reduced levels of C3a and impaired accumulation of C3a receptor-expressing monocyte-derived dendritic cells in the lung on HDM challenge. CONCLUSION: Fut2 induces epithelial fucosylation and exacerbates airway inflammation in asthmatic patients in part through C3a production and monocyte-derived dendritic cell accumulation in the lung.


Assuntos
Asma/imunologia , Células Epiteliais/imunologia , Fucosiltransferases/imunologia , Pulmão/imunologia , Mucosa Respiratória/imunologia , Alérgenos/imunologia , Animais , Complemento C3/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eosinofilia Pulmonar/imunologia , Pyroglyphidae/imunologia , Células Th17/imunologia , Células Th2/imunologia , Galactosídeo 2-alfa-L-Fucosiltransferase
16.
J Biol Chem ; 294(18): 7433-7444, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30898876

RESUMO

The type-I LacdiNAc (LDN; GalNAcß1-3GlcNAc) has rarely been observed in mammalian cells except in the O-glycan of α-dystroglycan, in contrast to type-II LDN structures (GalNAcß1-4GlcNAc) in N- and O-glycans that are present in many mammalian glycoproteins, such as pituitary and hypothalamic hormones. Although a ß1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2; type-I LDN synthase) has been cloned, the function of type-I LDN in mammalian cells is still unclear, as its carrier protein(s) has not been identified. In this study, using HeLa cells, we demonstrate that inhibition of Golgi-resident glycosyltransferase increases the abundance of B3GALNT2-synthesized type-I LDN structures, recognized by Wisteria floribunda agglutinin (WFA). Using isotope-coded glycosylation site-specific tagging (IGOT)-LC/MS analysis of Lec8 Chinese hamster cells lacking galactosylation and of cells transfected with the B3GALNT2 gene, we identified the glycoproteins that carry B3GALNT2-generated type-I LDN in their N-glycans. Our results further revealed that LDN presence on low-density lipoprotein receptor-related protein 1 and nicastrin depends on B3GALNT2, indicating the occurrence of type-I LDN in vivo in mammalian cells. Our analysis also uncovered that most of the identified glycoproteins localize to intracellular organelles, particularly to the endoplasmic reticulum. Whereas B4GALNT3 and B4GALNT4 synthesized LDN on extracellular glycoproteins, B3GALNT2 primarily transferred LDN to intracellular glycoproteins, thereby clearly delineating proteins that carry type-I or type-II LDNs. Taken together, our results indicate the presence of mammalian glycoproteins carrying type-I LDN on N-glycans and suggest that type-I and type-II LDNs have different roles in vivo.


Assuntos
Glicoproteínas/química , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Cricetinae , Glicoproteínas/biossíntese , Glicosilação , Células HeLa , Humanos , Organelas/metabolismo , Lectinas de Plantas/metabolismo , Receptores de N-Acetilglucosamina/metabolismo
17.
J Proteome Res ; 17(12): 4097-4112, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30359034

RESUMO

Glycoproteomics is an important recent advance in the field of glycoscience. In glycomics, glycan structures are comprehensively analyzed after glycans are released from glycoproteins. However, a major limitation of glycomics is the lack of insight into glycoprotein functions. The Biology/Disease-driven Human Proteome Project has a particular focus on biological and medical applications. Glycoproteomics technologies aimed at obtaining a comprehensive understanding of intact glycoproteins, i.e., the kind of glycan structures that are attached to particular amino acids and proteins, have been developed. This Review focuses on the recent progress of the technologies and their applications. First, the methods for large-scale identification of both N- and O-glycosylated proteins are summarized. Next, the progress of analytical methods for intact glycopeptides is outlined. MS/MS-based methods were developed for improving the sensitivity and speed of the mass spectrometer, in parallel with the software for complex spectrum assignment. In addition, a unique approach to identify intact glycopeptides using MS1-based accurate masses is introduced. Finally, as an advance of glycomics, two approaches to provide the spatial distribution of glycans in cells are described, i.e., MS imaging and lectin microarray. These methods allow rapid glycomic profiling of different types of biological samples and thus facilitate glycoproteomics.


Assuntos
Glicoproteínas/análise , Proteômica/tendências , Linhagem Celular , Glicômica/métodos , Glicosilação , Humanos , Polissacarídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
18.
Sci Rep ; 8(1): 14251, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250045

RESUMO

The anti-mesothelioma mAb SKM9-2 recognizes the sialylated protein HEG homolog 1 (HEG1). HEG1 is a 400 kDa mucin-like membrane protein found on mesothelioma. SKM9-2 can detect mesothelioma more specifically and sensitively than other antibodies against current mesothelioma markers; therefore, SKM9-2 would be likely useful for the precise detection and diagnosis of malignant mesothelioma. In the present study, we investigated the epitope of SKM9-2. We analyzed the binding of SKM9-2 to truncated HEG1 and candidate epitope-fused glycosylphosphatidylinositol-anchor proteins. The epitope of SKM9-2 was identified as an O-glycosylated region, 893-SKSPSLVSLPT-903, in HEG1. An alanine scanning assay of the epitope showed that SKM9-2 bound to a simple epitope in HEG1, and the SKxPSxVS sequence within the epitope was essential for SKM9-2 recognition. Mass spectrometry analysis and lectin binding analysis of soluble epitope peptides indicated that the SKM9-2 epitope, in which Ser897 was not glycosylated, contained two disialylated core 1 O-linked glycan-modified serine residues, Ser893 and Ser900. Neuraminidase treatment analysis also confirmed that the epitope in mesothelioma cells contained a similar glycan modification. The specific detection of mesothelioma with SKM9-2 can thus be performed by the recognition of sialylated glycan modification in the specific region of HEG1.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Mesotelioma/genética , Anticorpos Monoclonais/genética , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Glicosilação , Humanos , Lectinas/química , Lectinas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Espectrometria de Massas , Proteínas de Membrana/imunologia , Mesotelioma/imunologia , Mesotelioma/patologia , Mesotelioma Maligno , Ácido N-Acetilneuramínico/metabolismo , Peptídeos/genética , Peptídeos/imunologia , Polissacarídeos/genética , Polissacarídeos/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia
19.
J Am Soc Mass Spectrom ; 29(6): 1138-1152, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29675740

RESUMO

To elucidate the relationship between the protein function and the diversity and heterogeneity of glycans conjugated to the protein, glycosylation sites, glycan variation, and glycan proportions at each site of the glycoprotein must be analyzed. Glycopeptide-based structural analysis technology using mass spectrometry has been developed; however, complicated analyses of complex spectra obtained by multistage fragmentation are necessary, and sensitivity and throughput of the analyses are low. Therefore, we developed a liquid chromatography/mass spectrometry (MS)-based glycopeptide analysis method to reveal the site-specific glycome (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile, Glyco-RIDGE). This method used accurate masses and retention times of glycopeptides, without requiring MS2, and could be applied to complex mixtures. To increase the number of identified peptide, fractionation of sample glycopeptides for reduction of sample complexity is required. Therefore, in this study, glycopeptides were fractionated into four fractions by hydrophilic interaction chromatography, and each fraction was analyzed using the Glyco-RIDGE method. As a result, many glycopeptides having long glycans were enriched in the highest hydrophilic fraction. Based on the monosaccharide composition, these glycans were thought to be poly-N-acetyllactosamine (polylactosamine [pLN]), and 31 pLN-carrier proteins were identified in HL-60 cells. Gene ontology enrichment analysis revealed that pLN carriers included many molecules related to signal transduction, receptors, and cell adhesion. Thus, these findings provided important insights into the analysis of the glycoproteome using our novel Glyco-RIDGE method. Graphical Abstract ᅟ.


Assuntos
Glicoproteínas/química , Leucemia Promielocítica Aguda/patologia , Polissacarídeos/análise , Cromatografia Líquida/métodos , Glicopeptídeos/análise , Células HL-60 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
J Proteome Res ; 16(12): 4495-4505, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949141

RESUMO

Secretogranin III (SgIII) is a member of the chromogranin/secretogranin family of neuroendocrine secretory proteins. Granins are expressed in endocrine and neuroendocrine cells and subsequently processed into bioactive hormones. Although granin-derived peptide expression is correlated with neuroendocrine carcinomas, little is known about SgIII. We previously identified SgIII by a comparative glycoproteomics approach for elucidation of glycobiomarker candidates in lung carcinoma. Here, we examined the expression, secretion, and glycosylation of SgIII to identify novel biomarkers of small cell lung carcinoma (SCLC). In comparative immunohistochemical analysis and secretion profiling, SgIII was observed in all types of lung cancer. However, low-molecular-weight SgIII (short-form SgIII) was specifically found in SCLC culture medium. Glycoproteomics analysis showed that a fucosylated glycan was attached to the first of three potential N-glycosylation sites and an unfucosylated glycan was detected on the second site; however, the third site was not glycosylated. Next, we performed lectin capture with a fucose-binding lectin and detected short-form SgIII specifically in the sera of patients with SCLC. The results suggested an association between the fucosylated glycoform of short-form SgIII and SCLC. Thus, fucosylated short-form SgIII may be a valuable biomarker for SCLC and could be used to monitor development of the disease. All MS data are available via ProteomeXchange and jPOST with identifiers PXD007626 and JPST000313, respectively.


Assuntos
Cromograninas/sangue , Carcinoma de Pequenas Células do Pulmão/sangue , Biomarcadores , Células Cultivadas , Cromograninas/química , Cromograninas/metabolismo , Glicoproteínas/análise , Glicosilação , Humanos , Espectrometria de Massas , Carcinoma de Pequenas Células do Pulmão/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...