Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(13): 7226-7239, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35722977

RESUMO

We have shown that Anredera cordifolia extract improves learning and memory in a senescence-accelerated mouse model, and that α-linolenic acid (ALA)-rich Perilla frutescens seed oil (PO) improves brain function in healthy Japanese adults and elderly individuals. Herein, we present a 12-month, randomised, double-blind, parallel-armed intervention trial examining the effects of PO supplementation alone or in combination with A. cordifolia leaf powder on brain function in healthy elderly Japanese individuals. Participants were randomly divided into two groups: the PO group received 1.47 mL PO (0.88 g ALA) daily via soft gelatine capsules, and the POAC group received 1.47 mL PO and 1.12 g A. cordifolia leaf powder (1.46 mg vitexin and 1.12 mg adenosine) daily. After 12 months of intervention, the POAC group showed generally higher cognitive index scores than the PO group. The beneficial effects of combined supplementation on cognitive function were associated with increased ALA and eicosapentaenoic acid levels in red blood cell plasma membranes, increased serum biological antioxidant potential, and decreased serum triglyceride, glucose, and N-(epsilon)-carboxymethyl-lysine (CML), an advanced glycation end-product and biochemical marker of oxidative stress levels. The effects of combined supplementation on cognitive function also showed a significant negative correlation with serum CML levels after 12 months of intervention. Our findings suggest that combined long-term supplementation with PO and A. cordifolia more effectively ameliorates age-related cognitive decline than PO alone. These findings may serve as a basis for the development of new supplements for brain health. Clinical Trial Registry, UMIN000040863.


Assuntos
Disfunção Cognitiva , Perilla frutescens , Idoso , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Suplementos Nutricionais , Glucose/metabolismo , Humanos , Japão , Camundongos , Perilla frutescens/metabolismo , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Pós/metabolismo , Triglicerídeos/metabolismo
2.
Food Funct ; 13(5): 2768-2781, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35171190

RESUMO

Perilla (Perilla frutescens) seed oil (PO), rich in α-linolenic acid (ALA), can improve cognitive function in healthy elderly Japanese people. Here, supplements containing either PO alone or PO with nobiletin-rich air-dried immature ponkan powder were examined for their effects on cognitive function in 49 healthy elderly Japanese individuals. Patients were enrolled in a 12-month randomized, double-blind, parallel-armed study. Randomized participants in the PO group received soft gelatin capsules containing 1.47 mL (0.88 g of ALA) of PO daily, and those in the PO + ponkan powder (POPP) group received soft gelatin capsules containing both 1.47 mL of PO and 1.12 g ponkan powder (2.91 mg of nobiletin) daily. At the end of intervention, the POPP group showed significantly higher cognitive index scores than the PO group. The pro-cognitive effects of POPP treatment were accompanied by increases in ALA and docosahexaenoic acid levels in red blood cell plasma membranes, serum brain-derived neurotropic factor (BDNF) levels, and biological antioxidant potential. We demonstrate that 12-month intervention with POPP enhances serum BDNF and antioxidant potential, and may improve age-related cognitive impairment in healthy elderly people by increasing red blood cell ω-3 fatty acid levels. Clinical Trial Registry, UMIN000040863.


Assuntos
Antioxidantes/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Suplementos Nutricionais , Flavonas/farmacologia , Perilla frutescens , Ácido alfa-Linolênico/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/administração & dosagem , Antioxidantes/química , Método Duplo-Cego , Ácidos Graxos Ômega-3/metabolismo , Feminino , Flavonas/administração & dosagem , Flavonas/química , Humanos , Masculino , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Resultado do Tratamento , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/química
3.
Food Funct ; 12(9): 3992-4004, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33977955

RESUMO

Learning and memory impairment may result from age-related decline in synaptic plasticity-related proteins in the hippocampus. Therefore, exploration of functional foods capable of ameliorating memory and cognition decline is an interesting endeavor in neuroscience research. We report the effects of Anredera cordifolia (AC) extract on learning and memory deficits in a senescence-accelerated mouse-prone 8 (SAMP8) mouse model, which demonstrate age-related memory deficits and related pathological changes in the brain. After 8 weeks of oral administration of AC extract, the mice were trained in the Novel Object Recognition (NOR) task, and after 7 more weeks, in the Morris Water Maze (MWM) task. Following the completion of behavioral testing, the blood biochemistry parameters, the hippocampal levels of brain-derived neurotropic factor (BDNF), PSD95, and NR2A, and the p-cAMP-response element binding (p-CREB)/CREB ratio were measured. The AC-treated group spent more time exploring the novel objects in the NOR task, and showed faster acquisition and better retention in the MWM task than the negative control (CN) group. In addition, AC enhanced the levels of the aforementioned neuronal plasticity-related proteins, and did not affect the blood biochemistry parameters. Therefore, our data suggest that the AC extract may improve learning and memory without causing any noticeable side effects in the body.


Assuntos
Envelhecimento , Aprendizagem/efeitos dos fármacos , Magnoliopsida , Memória/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Plasticidade Neuronal
4.
Biol Pharm Bull ; 41(4): 451-457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607920

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, with progressive memory impairment. Recently, neprilysin, a ß-amyloid (Aß)-degrading enzyme has become featured as a drug target for AD. Previously, we identified nobiletin from citrus peels as a natural compound possessing anti-dementia activity. In addition, we demonstrated that nobiletin improved memory in memory-impaired animals and, further, that Aß levels were markedly decreased in the brains of these animals. We demonstrated in vitro that nobiletin up-regulates neprilysin expression and activity in human neuroblastoma cells. However, the action of nobiletin with regard to Aß degradation under in vitro AD pathological conditions remains unclear. In this study, we examined whether nobiletin could enhance the degradation of intra- and extracellular Aß using human induced pluripotent stem cell-derived AD model neurons, which generate an excess of Aß1-42 due to the familial AD presenilin-1 mutation. The neurons were treated in the presence or absence of nobiletin. The results of real-time quantitative RT-PCR indicated that neprilysin mRNA levels were significantly up-regulated by nobiletin. Furthermore, immunostaining with an anti-Aß antibody revealed that nobiletin substantially reduced the intraneuronal content of Aß. Interestingly, the results of Aß1-42 immunoassays confirmed that nobiletin also significantly decreased the levels of Aß1-42 released into the cellular medium. These results suggest that nobiletin enhanced the reduction of intra- and that extracellular Aß levels under AD pathologic conditions, and this is associated with the up-regulation of neprilysin expression. Collectively, nobiletin appears to be a promising novel prophylactic seed drug or functional food for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Flavonas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neprilisina/genética , Neurônios/metabolismo
5.
Can J Physiol Pharmacol ; 94(7): 728-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27128150

RESUMO

Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Flavonas/farmacologia , Fator de Crescimento Neural/farmacologia , Extratos Vegetais/farmacologia , Transcrição Gênica/fisiologia , Animais , Modulador de Elemento de Resposta do AMP Cíclico/genética , Sinergismo Farmacológico , Flavonas/isolamento & purificação , Células PC12 , Extratos Vegetais/isolamento & purificação , Ratos , Transcrição Gênica/efeitos dos fármacos
6.
Phytother Res ; 28(7): 1054-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24338843

RESUMO

The objective of the present study was to investigate the effect of the fucoxanthin (FUCO) alone and in combination with glucosamine hydrochloride (GAH) on carrageenan/kaolin-induced inflammatory arthritis model in rats and to explore its underlying mechanisms. Joint swelling, muscle weight ratio (%), histopathological examination and scoring, and proteoglycan degradation were examined. Pro-inflammatory interleukin (IL-1ß) and tumor necrosis (TNF-α) levels, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase(iNOS) protein expression and nitric oxide (NO) level in knee synovial tissue extract were analyzed using enzyme-linked immunosorbent assay, western blotting analysis, and Griess reagent assay, respectively. FUCO and FUCO + GAH not only may significantly reduce degrees of knee joint swelling and prevent against muscle atrophy, but also may significantly attenuate inflammation in synovial tissue, cartilage erosion, and proteoglycan loss. The efficacies of FUCO + GAH were stronger than that of GAH or FUCO. FUCO alone and FUCO + GAH can significantly inhibit upregulation of COX-2 and iNOS protein expressions, decrease of IL-1ß and TNF-α levels, and reduce NO production in knee synovial tissue extract. These results indicated that FUCO is an effective anti-arthritis agent through an antiinflammation mechanism. FUCO may enhance therapeutic effect of GAH on rat arthritis through mechanism of antiinflammation.


Assuntos
Artrite Experimental/tratamento farmacológico , Glucosamina/farmacologia , Xantofilas/farmacologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Carragenina , Ciclo-Oxigenase 2/metabolismo , Quimioterapia Combinada , Ensaio de Imunoadsorção Enzimática , Glucosamina/análogos & derivados , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Caulim , Articulação do Joelho/patologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Membrana Sinovial/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
J Orthop Res ; 31(3): 364-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23124986

RESUMO

Monosodium iodoacetate (MIA) is an inhibitor of glyceraldehyde-3-phosphate dehydrogenase activity, and causes dose-dependent cartilage degradation resembling the pathological changes of human osteoarthritis (OA). In this study, we assessed the apoptosis induced by MIA and clarified the underlying mechanisms using the primary rat chondrocytes. The apoptosis of primary rat chondrocytes was analyzed by flow cytometry. The levels of mitochondrial membrane potential (ΔΨm) were evaluated using fluorescence spectrophotometer. The production of reactive oxygen species (ROS) was determined by fluorescence spectrophotometer. Apoptosis-related protein cytochrome c and procaspase-3 expressions were examined by Western blotting. We found that MIA treatment induces apoptosis in chondrocytes, as confirmed by increases in the percent of apoptotic cells, up-regulation of cytochrome c and caspase-3 protein levels. Treatment with MIA increases ROS production and decreases the levels of ΔΨm. The antioxidant, N-acetylcysteine (NAC), significantly prevented the production of ROS, the reduction of ΔΨm, the release of cytochrome c and the activation of caspase-3. Further, NAC completely protected the cells from MIA-induced apoptosis. Together these observations suggest that the mechanisms of MIA-induced apoptosis are primarily via ROS production and mitochondria-mediated caspase-3 activation in primary rat chondrocytes.


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Iodoacetatos/toxicidade , Mitocôndrias/metabolismo , Osteoartrite/induzido quimicamente , Acetilcisteína/farmacologia , Animais , Apoptose/fisiologia , Cartilagem Articular/citologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Citocromos c/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/toxicidade , Cabeça do Fêmur/citologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Osteoartrite/metabolismo , Osteoartrite/patologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA