Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 42(5): 364-373, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522487

RESUMO

Non-coding RNAs have an integral regulatory role in numerous functions related to lung cancer development. Here, we report identification of a novel lncRNA, termed TP53-inhibiting lncRNA (TILR), which was found to function as a constitutive negative regulator of p53 expression, including activation of downstream genes such as p21 and MDM2, and induction of apoptosis. A proteomic search for TILR-associated proteins revealed an association with PCBP2, while the mid-portion of TILR was found to be required for both PCBP2 and p53 mRNA binding. In addition, depletion of PCBP2 resulted in phenocopied effects of TILR silencing. TILR was also shown to suppress p53 expression in a post-transcriptional manner, as well as via a positive feedback loop involving p53 and Fanconi anemia pathway genes. Taken together, the present findings clearly demonstrate that TILR constitutively inhibits p53 expression in cooperation with PCBP2, thus maintaining p53 transcriptional activity at a level sufficiently low for avoidance of spurious apoptosis induction.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Apoptose/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Proteômica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Natl Cancer Inst ; 114(2): 290-301, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34524427

RESUMO

BACKGROUND: Approximately 20% of lung adenocarcinoma (LUAD) is negative for the lineage-specific oncogene Thyroid transcription factor 1 (TTF-1) and exhibits worse clinical outcome with a low frequency of actionable genomic alterations. To identify molecular features associated with TTF-1-negative LUAD, we compared the transcriptomic and proteomic profiles of LUAD cell lines. SRGN , a chondroitin sulfate proteoglycan Serglycin, was identified as a markedly overexpressed gene in TTF-1-negative LUAD. We therefore investigated the roles and regulation of SRGN in TTF-1-negative LUAD. METHODS: Proteomic and metabolomic analyses of 41 LUAD cell lines were done using mass spectrometry. The function of SRGN was investigated in 3 TTF-1-negative and 4 TTF-1-positive LUAD cell lines and in a syngeneic mouse model (n = 5 to 8 mice per group). Expression of SRGN was evaluated in 94 and 105 surgically resected LUAD tumor specimens using immunohistochemistry. All statistical tests were 2-sided. RESULTS: SRGN was markedly overexpressed at mRNA and protein levels in TTF-1-negative LUAD cell lines (P < .001 for both mRNA and protein levels). Expression of SRGN in LUAD tumor tissue was associated with poor outcome (hazard ratio = 4.22, 95% confidence interval = 1.12 to 15.86, likelihood ratio test, P = .03), and with higher expression of Programmed cell death 1 ligand 1 (PD-L1) in tumor cells and higher infiltration of Programmed cell death protein 1-positive lymphocytes. SRGN regulated expression of PD-L1 as well as proinflammatory cytokines, including Interleukin-6, Interleukin-8, and C-X-C motif chemokine 1 in LUAD cell lines; increased migratory and invasive properties of LUAD cells and fibroblasts; and enhanced angiogenesis. SRGN was induced by DNA demethylation resulting from Nicotinamide N-methyltransferase-mediated impairment of methionine metabolism. CONCLUSIONS: Our findings suggest that SRGN plays a pivotal role in tumor-stromal interaction and reprogramming into an aggressive and immunosuppressive tumor microenvironment in TTF-1-negative LUAD.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Ligação a DNA , Neoplasias Pulmonares , Proteoglicanas , Fatores de Transcrição , Proteínas de Transporte Vesicular , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Fenótipo , Proteoglicanas/metabolismo , Proteômica , Fator Nuclear 1 de Tireoide/genética , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo
3.
Cancer Sci ; 112(7): 2770-2780, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33934437

RESUMO

Ceramide synthase 6 (CERS6) promotes lung cancer metastasis by stimulating cancer cell migration. To examine the underlying mechanisms, we performed luciferase analysis of the CERS6 promoter region and identified the Y-box as a cis-acting element. As a parallel analysis of database records for 149 non-small-cell lung cancer (NSCLC) cancer patients, we screened for trans-acting factors with an expression level showing a correlation with CERS6 expression. Among the candidates noted, silencing of either CCAAT enhancer-binding protein γ (CEBPγ) or Y-box binding protein 1 (YBX1) reduced the CERS6 expression level. Following knockdown, CEBPγ and YBX1 were found to be independently associated with reductions in ceramide-dependent lamellipodia formation as well as migration activity, while only CEBPγ may have induced CERS6 expression through specific binding to the Y-box. The mRNA expression levels of CERS6, CEBPγ, and YBX1 were positively correlated with adenocarcinoma invasiveness. YBX1 expression was observed in all 20 examined clinical lung cancer specimens, while 6 of those showed a staining pattern similar to that of CERS6. The present findings suggest promotion of lung cancer migration by possible involvement of the transcription factors CEBPγ and YBX1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Pseudópodes , Esfingosina N-Aciltransferase/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Invasividade Neoplásica , Regiões Promotoras Genéticas , Pseudópodes/genética , RNA Mensageiro/metabolismo , Esfingosina N-Aciltransferase/genética , Ativação Transcricional , Regulação para Cima , Proteína 1 de Ligação a Y-Box/genética , Proteínas rac1 de Ligação ao GTP
4.
Cancer Sci ; 112(4): 1614-1623, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33506575

RESUMO

We previously reported that ROR1 is a crucial downstream gene for the TTF-1/NKX2-1 lineage-survival oncogene in lung adenocarcinoma, while others have found altered expression of ROR1 in multiple cancer types. Accumulated evidence therefore indicates ROR1 as an attractive molecular target, though it has yet to be determined whether targeting Ror1 can inhibit tumor development and growth in vivo. To this end, genetically engineered mice carrying homozygously floxed Ror1 alleles and an SP-C promoter-driven human mutant EGFR transgene were generated. Ror1 ablation resulted in marked retardation of tumor development and progression in association with reduced malignant characteristics and significantly better survival. Interestingly, gene set enrichment analysis identified a hypoxia-induced gene set (HALLMARK_HYPOXIA) as most significantly downregulated by Ror1 ablation in vivo, which led to findings showing that ROR1 knockdown diminished HIF-1α expression under normoxia and clearly hampered HIF-1α induction in response to hypoxia in human lung adenocarcinoma cell lines. The present results directly demonstrate the importance of Ror1 for in vivo development and progression of lung adenocarcinoma, and also identify Ror1 as a novel regulator of Hif-1α. Thus, a future study aimed at the development of a novel therapeutic targeting ROR1 for treatment of solid tumors such as seen in lung cancer, which are frequently accompanied with a hypoxic tumor microenvironment, is warranted.


Assuntos
Adenocarcinoma de Pulmão/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hipóxia/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oncogenes/genética , Transdução de Sinais/genética , Fator Nuclear 1 de Tireoide/genética , Microambiente Tumoral/genética
5.
Cancer Sci ; 112(3): 1225-1234, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33370472

RESUMO

We have previously identified receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a direct transcriptional target of TTF-1/NKX2-1, a lineage-survival oncogene in lung adenocarcinoma. ROR1 sustains prosurvival signaling from multiple receptor tyrosine kinases including epidermal growth factor receptor, MET, and insulin-like growth factor 1 receptor in part by maintaining the caveolae structure as a scaffold protein of cavin-1 and caveolin-1. In this study, a high throughput screening of the natural product library containing 2560 compounds was undertaken using a cell-based FluoPPI assay detecting ROR1-cavin-1 interaction. As a result, geldanamycin (GA), a known inhibitor of heat shock protein 90 (HSP90), was identified as a potential inhibitor of ROR1. Geldanamycin, as well as two GA derivatives tested in the clinic, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreased ROR1 protein expression. We found that ROR1 physically interacted with HSP90α, but not with other HSP90 paralogs, HSP90ß or GRP94. Geldanamycin in turn destabilized and degraded ROR1 protein in a dose- and time-dependent manner through the ubiquitin/proteasome pathway, resulting in a significant suppression of cell proliferation in lung adenocarcinoma cell lines, for which the kinase domain of ROR1, but not its kinase activity or N-glycosylation, was required. Our findings indicate that HSP90 is required to sustain expression of ROR1 crucial for lung adenosarcoma survival, suggesting that inhibition of HSP90 could be a promising therapeutic strategy in ROR1-positive lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antibióticos Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Adenocarcinoma de Pulmão/patologia , Antibióticos Antineoplásicos/uso terapêutico , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo
6.
EMBO J ; 38(17): e98441, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31361039

RESUMO

Long non-coding RNAs (lncRNAs) function in a wide range of processes by diverse mechanisms, though their roles in regulation of oncogenes and/or tumor suppressors remain rather elusive. We performed a global search for lncRNAs affecting MYC activity using a systems biology-based approach with a K supercomputer and the GIMLET algorism based on local distance correlations. Consequently, MYMLR was identified and experimentally shown to maintain MYC transcriptional activity and cell cycle progression despite the low levels of expression. A proteomic search for MYMLR-binding proteins identified PCBP2, while it was also found that MYMLR places a 557-kb upstream enhancer region in the proximity of the MYC promoter in cooperation with PCBP2. These findings implicate a crucial role for MYMLR in regulation of the archetypical oncogene MYC and warrant future studies regarding the involvement of low copy number lncRNAs in regulation of other crucial oncogenes and tumor suppressor genes.


Assuntos
Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Células A549 , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Transplante de Neoplasias , Proteômica , Proteínas de Ligação a RNA/metabolismo , Biologia de Sistemas
7.
Oncogene ; 38(26): 5142-5157, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30894682

RESUMO

The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a transcriptional target of the lineage-survival oncogene NKX2-1/TTF-1 in lung adenocarcinomas. In addition to its kinase-dependent role, ROR1 functions as a scaffold protein to facilitate interaction between caveolin-1 (CAV1) and CAVIN1, and consequently maintains caveolae formation, which in turn sustains pro-survival signaling toward AKT from multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET (proto-oncogene, receptor tyrosine kinase), and IGF-IR (insulin-like growth factor receptor 1). Therefore, ROR1 is an attractive target for overcoming EGFR-TKI resistance due to various mechanisms such as EGFR T790M double mutation and bypass signaling from other RTKs. Here, we report that ROR1 possesses a novel scaffold function indispensable for efficient caveolae-dependent endocytosis. CAVIN3 was found to bind with ROR1 at a site distinct from sites for CAV1 and CAVIN1, a novel function required for proper CAVIN3 subcellular localization and caveolae-dependent endocytosis, but not caveolae formation itself. Furthermore, evidence of a mechanistic link between ROR1-CAVIN3 interaction and consequential caveolae trafficking, which was found to utilize a binding site distinct from those for ROR1 interactions with CAV1 and CAVIN1, with RTK-mediated pro-survival signaling towards AKT in early endosomes in lung adenocarcinoma cells was also obtained. The present findings warrant future study to enable development of novel therapeutic strategies for inhibiting the multifaceted scaffold functions of ROR1 in order to reduce the intolerable death toll from this devastating cancer.


Assuntos
Adenocarcinoma de Pulmão/patologia , Cavéolas/fisiologia , Endocitose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Células COS , Cavéolas/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Chlorocebus aethiops , Endocitose/genética , Células HEK293 , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ligação Proteica/fisiologia , Proto-Oncogene Mas , Células Sf9 , Transdução de Sinais/genética , Spodoptera
8.
Cancer Sci ; 108(7): 1394-1404, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28474808

RESUMO

Thyroid transcription factor-1 (TTF-1), also known as NKX2-1, plays a role as a lineage-survival oncogene in lung adenocarcinoma that possesses double-edged sword characteristics. Although evidence from previous studies has steadily accumulated regarding the roles of TTF-1 in transcriptional regulation of protein-coding genes, little is known about its regulatory relationship with microRNAs. Here, we utilized an integrative approach designed to extract maximal information from expression profiles of both patient tumors in vivo and TTF-1-inducible cell lines in vitro, which identified microRNA (miR)-532-5p as a novel transcriptional target of TTF-1. We found that miR-532-5p is directly regulated by TTF-1 through its binding to a genomic region located 8 kb upstream of miR-532-5p, which appears to impose transcriptional regulation independent of that of CLCN5, a protein-coding gene harboring miR-532-5p in its intron 3. Furthermore, our results identified KRAS and MKL2 as novel direct targets of miR-532-5p. Introduction of miR-532-5p mimics markedly induced apoptosis in KRAS-mutant as well as KRAS wild-type lung adenocarcinoma cell lines. Interestingly, miR-532-5p showed effects on MEK-ERK pathway signaling, specifically in cell lines sensitive to siKRAS treatment, whereas those miR-532-5p-mediated effects were clearly rendered as phenocopies by repressing expression or inhibiting the function of MKL2 regardless of KRAS mutation status. In summary, our findings show that miR-532-5p is a novel transcriptional target of TTF-1 that plays a tumor suppressive role by targeting KRAS and MKL2 in lung adenocarcinoma.


Assuntos
Adenocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Transcriptoma
9.
Cancer Sci ; 107(2): 155-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26661061

RESUMO

We previously identified receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a transcriptional target of the NKX2-1/TTF-1 lineage-survival oncogene in lung adenocarcinoma. ROR1 consequently sustains a favorable balance between pro-survival phosphatidylinositol 3-kinase-protein kinase B and pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1)-p38MAPK signaling. In contrast to recent advances in understanding how ROR1 sustains pro-survival signaling, the mechanism of ROR1 repression of pro-apoptotic signaling remains rather elusive. In the present study, we investigated the underlying mechanism of ROR1-mediated inhibition of the ASK1-p38MAPK signaling pathway. Growth inhibition mediated by siROR1 was partially but significantly alleviated by ASK1 co-knockdown in lung adenocarcinoma cell lines. Also, ASK1 phosphorylation at Thr845, which reflects its activated state, was clearly inhibited by ROR1 overexpression in both steady state and oxidative stress-elicited conditions in MSTO-211H cells. In addition, we found that ROR1 was physically associated with ASK1 at the C-terminal serine threonine-rich domain of ROR1. Furthermore, ROR1 kinase activity was shown to be required to repress the ASK1-p38 axis and oxidative stress-induced cell death. The present findings thus support our notion that ROR1 sustains lung adenocarcinoma survival, at least in part, through direct physical interaction with ASK1 and consequential repression of the pro-apoptotic ASK1-p38 axis in a ROR1 kinase activity-dependent manner.


Assuntos
Adenocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Humanos , Imunoprecipitação , Proteínas Nucleares/metabolismo , Oncogenes , RNA Interferente Pequeno , Transdução de Sinais/fisiologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo , Transfecção
10.
Carcinogenesis ; 36(12): 1464-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26483346

RESUMO

Accumulating evidence indicates that altered miRNA expression is crucially involved in lung cancer development, though scant information is available regarding how MYC, an archetypical oncogene, is regulated by miRNAs, especially via a mechanism involving MYC cofactors. In this study, we attempted to identify miRNAs involved in regulation of MYC transcriptional activity in lung cancer. To this end, we utilized an integrative approach with combinatorial usage of miRNA and mRNA expression profile datasets of patient tumor tissues, as well as those of MYC-inducible cell lines in vitro. In addition to miRNAs previously reported to be directly regulated by MYC, including let-7 and miR-17-92, our strategy also helped to identify miR-342-3p as capable of indirectly regulating MYC activity via direct repression of E2F1, a MYC-cooperating molecule. Furthermore, miR-342-3p module activity, which we defined as a gene set reflecting the experimentally substantiated influence of miR-342-3p on mRNA expression, was found to be inversely correlated with MYC activity reflected by MYC module activity in three independent datasets of lung adenocarcinoma patients obtained from the Director's Challenge Consortium of the United States (P = 1.94 × 10(-73)), the National Cancer Center of Japan (P = 9.05 × 10(-34)) and the present study (P = 1.17 × 10(-19)). Our integrative approach appears to be useful to elucidate inter-regulatory relationships between miRNAs and protein coding genes of interest, even those present in patient tumor tissues, which remains a challenge to better understand the pathogenesis of this devastating disease.


Assuntos
Adenocarcinoma/metabolismo , Fator de Transcrição E2F1/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Interferência de RNA , Regiões 3' não Traduzidas , Adenocarcinoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Transcrição Gênica , Ativação Transcricional
11.
Carcinogenesis ; 35(10): 2224-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903339

RESUMO

Accumulation of genetic and epigenetic changes alters regulation of a web of interconnected genes including microRNAs (miRNAs), which confer hallmark capabilities and characteristic cancer features. In this study, the miRNA and messenger RNA expression profiles of 126 non-small cell lung cancer specimens were analyzed, with special attention given to the diversity of lung adenocarcinomas. Of those, 76 adenocarcinomas were classified into two major subtypes, developing lung-like and adult lung-like, based on their distinctive miRNA expression profiles resembling those of either developing or adult lungs, respectively. A systems biology-based approach using a Bayesian network and non-parametric regression was employed to estimate the gene regulatory circuitry functioning in patient tumors in order to identify subnetworks enriched for genes with differential expression between the two major subtypes. miR-30d and miR-195, identified as hub genes in such subnetworks, had lower levels of expression in the developing lung-like subtype, whereas introduction of miR-30d or miR-195 into the lung cancer cell lines evoked shifts of messenger RNA expression profiles toward the adult lung-like subtype. Conversely, the influence of miR-30d and miR-195 was significantly different between the developing lung-like and adult lung-like subtypes in our analysis of the patient data set. In addition, RRM2, a child gene of the miR-30d-centered subnetwork, was found to be a direct target of miR-30d. Together, our findings reveal the existence of two miRNA expression profile-defined lung adenocarcinoma subtypes with distinctive clinicopathologic features and also suggest the usefulness of a systems biology-based approach to gain insight into the altered regulatory circuitry involved in cancer development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Pulmão/crescimento & desenvolvimento , MicroRNAs/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia
12.
Curr Biol ; 18(13): 933-42, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18571408

RESUMO

BACKGROUND: In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cell's capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS: In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS: These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Células HeLa , Humanos , Fosforilação , Interferência de RNA , Xenopus
13.
J Biol Chem ; 282(13): 9475-9481, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17276978

RESUMO

Transforming growth factor-beta (TGF-beta) regulates a variety of physiologic processes through essential intracellular mediators Smads. The SnoN oncoprotein is an inhibitor of TGF-beta signaling. SnoN recruits transcriptional repressor complex to block Smad-dependent transcriptional activation of TGF-beta-responsive genes. Following TGF-beta stimulation, SnoN is rapidly degraded, thereby allowing the activation of TGF-beta target genes. Here, we report the role of TAK1 as a SnoN protein kinase. TAK1 interacted with and phosphorylated SnoN, and this phosphorylation regulated the stability of SnoN. Inactivation of TAK1 prevented TGF-beta-induced SnoN degradation and impaired induction of the TGF-beta-responsive genes. These data suggest that TAK1 modulates TGF-beta-dependent cellular responses by targeting SnoN for degradation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Linhagem Celular Transformada , Células HeLa , Humanos , Fosforilação
14.
J Biol Chem ; 281(52): 39891-6, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17079228

RESUMO

TAK1 (transforming growth factor beta-activated kinase 1) is a serine/threonine kinase that is a mitogen-activated protein kinase kinase kinase and an essential intracellular signaling component in inflammatory signaling pathways. Upon stimulation of cells with inflammatory cytokines, TAK1 binds proteins that stimulate autophosphorylation within its activation loop and is thereby catalytically activated. This activation is transient; it peaks within a couple of minutes and is subsequently down-regulated rapidly to basal levels. The mechanism of down-regulation of TAK1 has not yet been elucidated. In this study, we found that toxin inhibition of type 2A protein phosphatases greatly enhances interleukin 1 (IL-1)-dependent phosphorylation of Thr-187 in the TAK1 activation loop as well as the catalytic activity of TAK1. From proteomic analysis of TAK1-binding proteins, we identified protein phosphatase 6 (PP6), a type-2A phosphatase, and demonstrated that PP6 associated with and inactivated TAK1 by dephosphorylation of Thr-187. Ectopic and endogenous PP6 co-precipitated with TAK1, and expression of PP6 reduced IL-1 activation of TAK1 but did not affect osmotic activation of MLK3, another MAPKKK. Reduction of PP6 expression by small interfering RNA enhances IL-1-induced phosphorylation of Thr-187 in TAK1. Enhancement occurred without change in levels of PP2A showing specificity for PP6. Our results demonstrate that PP6 specifically down-regulates TAK1 through dephosphorylation of Thr-187 in the activation loop, which is likely important for suppressing inflammatory responses via TAK1 signaling pathways.


Assuntos
Regulação para Baixo/fisiologia , Interleucina-1/fisiologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Transdução de Sinais/fisiologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/biossíntese , Isoenzimas/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/biossíntese , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
J Biol Chem ; 281(12): 7863-72, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16446357

RESUMO

Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-kappaB and c-Jun N-terminal kinase (JNK), which is essential for LMP1 oncogenic activity. Genetic analysis has revealed that tumor necrosis factor receptor-associated factor 6 (TRAF6) is an indispensable intermediate of LMP1 signaling leading to activation of both NF-kappaB and JNK. However, the mechanism by which LMP1 engages TRAF6 for activation of NF-kappaB and JNK is not well understood. Here we demonstrate that TAK1 mitogen-activated protein kinase kinase kinase and TAK1-binding protein 2 (TAB2), together with TRAF6, are recruited to LMP1 through its N-terminal transmembrane region. The C-terminal cytoplasmic region of LMP1 facilitates the assembly of this complex and enhances activation of JNK. In contrast, IkappaB kinase gamma is recruited through the C-terminal cytoplasmic region and this is essential for activation of NF-kappaB. Furthermore, we found that ablation of TAK1 resulted in the loss of LMP1-induced activation of JNK but not of NF-kappaB. These results suggest that an LMP1-associated complex containing TRAF6, TAB2, and TAK1 plays an essential role in the activation of JNK. However, TAK1 is not an exclusive intermediate for NF-kappaB activation in LMP1 signaling.


Assuntos
Herpesvirus Humano 4/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Deleção de Genes , Humanos , Immunoblotting , MAP Quinase Quinase Quinases/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Plasmídeos/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Transfecção
16.
J Biol Chem ; 278(20): 18485-90, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12624112

RESUMO

TAK1, a member of the mitogen-activated kinase kinase kinase (MAPKKK) family, participates in proinflammatory cellular signaling pathways by activating JNK/p38 MAPKs and NF-kappaB. To identify drugs that prevent inflammation, we screened inhibitors of TAK1 catalytic activity. We identified a natural resorcylic lactone of fungal origin, 5Z-7-oxozeaenol, as a highly potent inhibitor of TAK1. This compound did not effectively inhibit the catalytic activities of the MEKK1 or ASK1 MAPKKKs, suggesting that 5Z-7-oxozeaenol is a selective inhibitor of TAK1. In cell culture, 5Z-7-oxozeaenol blocked interleukin-1-induced activation of TAK1, JNK/p38 MAPK, IkappaB kinases, and NF-kappaB, resulting in inhibition of cyclooxgenase-2 production. Furthermore, in vivo 5Z-7-oxozeaenol was able to inhibit picryl chloride-induced ear swelling. Thus, 5Z-7-oxozeaenol blocks proinflammatory signaling by selectively inhibiting TAK1 MAPKKK.


Assuntos
Anti-Inflamatórios/farmacologia , Lactonas/química , MAP Quinase Quinase Quinases/metabolismo , Zearalenona/química , Zearalenona/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular , Células Cultivadas , Ciclo-Oxigenase 2 , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Genes Reporter , Vetores Genéticos , Humanos , Immunoblotting , Inflamação , Concentração Inibidora 50 , Interleucina-1/metabolismo , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Químicos , Testes de Precipitina , Prostaglandina-Endoperóxido Sintases/metabolismo , Ligação Proteica , Transdução de Sinais , Fatores de Tempo , Transfecção , Zearalenona/análogos & derivados , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...