Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 223: 115186, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586709

RESUMO

The presence of heavy metals (HMs) in aquatic ecosystems is a universal concern due to their tendency to accumulate in aquatic organisms. HMs accumulation has been found to cause toxic effects in aquatic organisms. The common HMs-induced toxicities are growth inhibition, reduced survival, oxidative stress, tissue damage, respiratory problems, and gut microbial dysbiosis. The application of dietary probiotics has been evolving as a potential approach to bind and remove HMs from the gut, which is called "Gut remediation". The toxic effects of HMs in fish, mice, and humans with the potential of probiotics in removing HMs have been discussed previously. However, the toxic effects of HMs and protective strategies of probiotics on the organisms of each trophic level have not been comprehensively reviewed yet. Thus, this review summarizes the toxic effects caused by HMs in the organisms (at each trophic level) of the aquatic food chain, with a special reference to gut microbiota. The potential of bacterial probiotics in toxicity alleviation and their protective strategies to prevent toxicities caused by HMs in them are also explained. The dietary probiotics are capable of removing HMs (50-90%) primarily from the gut of the organisms. Specifically, probiotics have been reported to reduce the absorption of HMs in the intestinal tract via the enhancement of intestinal HM sequestration, detoxification of HMs, changing the expression of metal transporter proteins, and maintaining the gut barrier function. The probiotic is recommended as a novel strategy to minimize aquaculture HMs toxicity and safe human health.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Probióticos , Humanos , Animais , Camundongos , Ecossistema , Metais Pesados/toxicidade , Metais Pesados/análise , Poluição Ambiental
2.
NPJ Biofilms Microbiomes ; 8(1): 63, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974020

RESUMO

Exposure to heavy metals (HMs) is a threat to human health. Although probiotics can detoxify HMs in animals, their effectiveness and mechanism of action in humans have not been studied well. Therefore, we conducted this randomized, double-blind, controlled trial on 152 occupational workers from the metal industry, an at-risk human population, to explore the effectiveness of probiotic yogurt in reducing HM levels. Participants were randomly assigned to two groups: one consumed probiotic yogurt containing the HM-resistant strain Pediococcus acidilactici GR-1 and the other consumed conventional yogurt for 12 weeks. Analysis of metal contents in the blood revealed that the consumption of probiotic yogurt resulted in a higher and faster decrease in copper (34.45%) and nickel (38.34%) levels in the blood than the consumption of conventional yogurt (16.41% and 27.57%, respectively). Metagenomic and metabolomic studies identified a close correlation between gut microbiota (GM) and host metabolism. Significantly enriched members of Blautia and Bifidobacterium correlated positively with the antioxidant capacities of GM and host. Further murine experiments confirmed the essential role of GM and protective effect of GR-1 on the antioxidative role of the intestine against copper. Thus, the use of probiotic yogurt may be an effective and affordable approach for combating toxic metal exposure through the protection of indigenous GM in humans.ClinicalTrials.gov identifier: ChiCTR2100053222.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Pediococcus acidilactici , Probióticos , Animais , Cobre , Humanos , Metaboloma , Camundongos
3.
Fish Shellfish Immunol ; 120: 190-201, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34848303

RESUMO

Heavy metals (HMs) contaminated fish is a threat to humans when consumed. Dietary probiotics have evolved as a successful HMs removal approach. In this study, probiotics Enterococcus (EC) sp. and Lactococcus (LC) sp. were evaluated for toxicity alleviation and gut microbiota maintenance in Cyprinus carpio (single and combined approach) on Cr, Cd, and Cu mixture (0.8 mg/L and 1.6 mg/L) exposure (28 days). HMs removal, oxidative stress, cytokines response, histology, and gut microbiota were investigated. LC alone showed remarkable HMs removal for Cr (62.28%-87.57%), Cd (89%-90.42%), and Cu (72%-88%) than LC + EC. Probiotics up-regulated superoxide dismutase and total protein levels, while decreased the activity of malondialdehyde than the control. Pro-inflammatory cytokine (TNF-α) and chemokine (IL-8) expressions were higher at 1.6 mg/L concentration, whereas anti-inflammatory cytokine (IL-10) was higher in the 0.8 mg/L group. LC mitigated the histological alterations of gills, kidneys, and intestines, particularly at the lower concentration. Sequencing results revealed that Proteobacteria (44%-61%) was the most dominant phylum in all groups, followed by Fusobacteria (34%-36%) at 0.8 mg/L and Firmicutes (19%-34%) at 1.6 mg/L. The current study presented LC and EC potential separately and in combination to countermeasure HMs mixture induced toxicity and gut microbial dysbiosis, in which the conjoint group was less effective.


Assuntos
Carpas , Microbioma Gastrointestinal , Lactococcus lactis , Metais Pesados , Probióticos , Animais , Cádmio , Citocinas , Dieta/veterinária , Metais Pesados/toxicidade
4.
Gut Microbes ; 13(1): 1-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33764849

RESUMO

Recent studies into the beneficial effects of fermented foods have shown that this class of foods are effective in managing hyperuricemia and gout. In this study, the uric acid (UA) degradation ability of Limosilactobacillus fermentum JL-3 strain, isolated from "Jiangshui" (a fermented Chinese food), was investigated. In vitro results showed that JL-3 strain exhibited high degradation capacity and selectivity toward UA. After oral administration to mice for 15 days, JL-3 colonization was continuously detected in the feces of mice. The UA level in urine of mice fed with JL-3 was similar with the control group mice. And the serum UA level of the former was significantly lower (31.3%) than in the control, further confirmed the UA-lowering effect of JL-3 strain. Limosilactobacillus fermentum JL-3 strain also restored some of the inflammatory markers and oxidative stress indicators (IL-1ß, MDA, CRE, blood urea nitrogen) related to hyperuricemia, while the gut microbial diversity results showed that JL-3 could regulate gut microbiota dysbiosis caused by hyperuricemia. Therefore, the probiotic Limosilactobacillus fermentum JL-3 strain is effective in lowering UA levels in mice and could be used as a therapeutic adjunct agent in treating hyperuricemia.


Assuntos
Alimentos Fermentados/microbiologia , Gota/epidemiologia , Hiperuricemia/dietoterapia , Limosilactobacillus fermentum/isolamento & purificação , Limosilactobacillus fermentum/metabolismo , Probióticos , Ácido Úrico/metabolismo , Animais , Animais não Endogâmicos , Disbiose/microbiologia , Microbioma Gastrointestinal , Gota/prevenção & controle , Humanos , Hiperuricemia/metabolismo , Masculino , Camundongos , Estresse Oxidativo
5.
Microb Biotechnol ; 14(2): 465-478, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32578381

RESUMO

Molecular analyses relying on RNA, as a direct way to unravel active microbes and their functional genes, have received increasing attention from environmental researchers recently. However, extracting sufficient and high-quality total microbial RNA from seriously heavy metal-contaminated soils is still a challenge. In this study, the guanidine thiocyanate-high EDTA (GTHE) method was established and optimized for recovering high quantity and quality of RNA from long-term heavy metal-contaminated soils. Due to the low microbial biomass in the soils, we combined multiple strong denaturants and intense mechanical lysis to break cells for increasing RNA yields. To minimize RNAase and heavy metals interference on RNA integrity, the concentrations of guanidine thiocyanate and EDTA were increased from 0.5 to 0.625 ml g-1 soil and 10 to 100 mM, respectively. This optimized GTHE method was applied to seven severely contaminated soils, and the RNA recovery efficiencies were 2.80 ~ 59.41 µg g-1 soil. The total microbial RNA of non-Cr(VI) (NT) and Cr(VI)-treated (CT) samples was utilized for molecular analyses. The result of qRT-PCR demonstrated that the expressions of two tested genes, chrA and yieF, were respectively upregulated 4.12- and 62.43-fold after Cr(VI) treatment. The total microbial RNA extracted from NT and CT samples, respectively, reached to 26.70 µg and 30.75 µg, which were much higher than the required amount (5 µg) for metatranscriptomic library construction. Besides, ratios of mRNA read were more than 86%, which indicated the high-quality libraries constructed for metatranscriptomic analysis. In summary, the GTHE method is useful to study microbes of contaminated habitats.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético , Guanidinas , Metais Pesados/análise , RNA , Solo , Poluentes do Solo/análise , Tiocianatos
6.
Biotechnol Bioeng ; 118(1): 210-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915455

RESUMO

Copper pollution poses a serious threat to the aquatic environment; however, in situ analytical methods for copper monitoring are still scarce. In the current study, Escherichia coli Rosetta was genetically modified to express OprF and ribB with promoter Pt7 and PcusC , respectively, which could synthesize porin and senses Cu2+ to produce riboflavin. The cell membrane permeability of this engineered strain was increased and its riboflavin production (1.45-3.56 µM) was positively correlated to Cu2+ (0-0.5 mM). The biosynthetic strain was then employed in microbial fuel cell (MFC) based biosensor. Under optimal operating parameters of pH 7.1 and 37°C, the maximum voltage (248, 295, 333, 352, and 407 mV) of the constructed MFC biosensor showed a linear correlation with Cu2+ concentration (0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively; R2 = 0.977). The continuous mode testing demonstrated that the MFC biosensor specifically senses Cu2+ with calculated detection limit of 28 µM, which conforms to the common Cu2+ safety standard (32 µM). The results obtained with the developed biosensor system were consistent with the existing analytical methods such as colorimetry, flame atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. In conclusion, this MFC-based biosensor overcomes the signal conversion and transmission problems of conventional approaches, providing a fast and economic analytical alternative for in situ monitoring of Cu2+ in water.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Cobre/análise , Escherichia coli , Microrganismos Geneticamente Modificados , Riboflavina/biossíntese , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Riboflavina/genética
7.
Ecotoxicology ; 30(8): 1527-1537, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33123966

RESUMO

Heavy metals have been severely polluting the environment. However, the response mechanism of microbial communities to short-term heavy metals stress remains unclear. In this study, metagenomics (MG) and metatranscriptomics (MT) was performed to observe the microbial response to short-term Cr(VI) stress. MG data showed that 99.1% of species were similar in the control and Cr(VI) treated groups. However, MT data demonstrated that 83% of the microbes were active in which 58.7% increased, while the relative abundance of 41.3% decreased after short-term Cr(VI) incubation. The MT results also revealed 9% of microbes were dormant in samples. Genes associated with oxidative stress, Cr(VI) transport, resistance, and reduction, as well as genes with unknown functions were 2-10 times upregulated after Cr(VI) treatment. To further confirm the function of unknown genes, two genes (314 and 494) were selected to detect the Cr(VI) resistance and reduction ability. The results showed that these genes significantly increased the Cr(VI) remediation ability of Escherichia coli. MT results also revealed an increase in the expression of some rare genera (at least two times) after Cr(VI) treatment, indicating these rare species played a crucial role in microbial response to short-term Cr(VI) stress. In summary, MT is an efficient way to understand the role of active and dormant microbes in specific environmental conditions.


Assuntos
Metais Pesados , Microbiota , Cromo/toxicidade , Metagenômica
8.
Environ Pollut ; 266(Pt 3): 115293, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781213

RESUMO

Heavy metals (HMs) in an aquatic environment mainly affects fish, and thus, fish are convenient pollution bio-indicators. In this study, the toxic effects of HM mixture (chromium (Cr), cadmium (Cd), copper (Cu)) in 0 mg/L to 3.2 mg/L concentration range was investigated in Cyprinus carpio (28 days). HM accumulation, histopathology, oxidative stress, and gut microbial changes were evaluated. HMs accumulated in the order of Cr > Cu > Cd, primarily in the kidneys and finally scales. Reactive oxygen species generation increased in all exposure groups up to day 14, with maximum generation at 3.2 mg/L mixture, which later decreased on day 28 in all. Malondialdehydeand and superoxide dismutase levels increased from day 7 to 28 with increased HM concentrations, while total protein showed an inverse trend. Gill histopathology showed major changes such as uplifted and disintegrated primary lamella, and secondary lamella shortening. The kidneys were characterized by glomerular necrosis, Bowman's capsule expansion, and tubular space dilatation. Proteobacteria and Firmicutes abundance increased up to 59.4% and 99.16% in 0.8 mg/L and 3.2 mg/L treatment groups, respectively. This study provided a better understanding on the physiology and gut microbiota alteration in C. carpio under multiple HM stress.


Assuntos
Carpas , Microbioma Gastrointestinal , Metais Pesados , Poluentes Químicos da Água/análise , Animais , Disbiose
9.
J Environ Manage ; 270: 110913, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721347

RESUMO

Emerging contaminants (ECs) are synthetic organic chemicals that released into the environment, which pose a serious threat to the ecosystem and human health. Due to the high costs of physicochemical methods and the possibility of secondary pollution, and conventional biological treatment techniques are not efficient to remove ECs. Thus, there is a need to develop novel technologies to treat ECs. Anaerobic digestion (AD) is reported to degrade most ECs. Anaerobic membrane bioreactor (AnMBR) is an upgraded AD technology that has high system stability and microbial community abundance. The biogas production and EC biodegradation efficiency in the AnMBR system are markedly higher than those in the traditional AD system. In recent years, AnMBR is widely used to remove environmental ECs. This review analyzes the feasibility and challenges of AnMBR in the treatment of ECs and provides useful insights for improving the performance and efficiency of AnMBR to treat ECs.


Assuntos
Ecossistema , Águas Residuárias , Anaerobiose , Biocombustíveis , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos
10.
Commun Biol ; 3(1): 242, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415160

RESUMO

Heavy metal contamination in food endangers human health. Probiotics can protect animals and human against heavy metals, but the detoxification mechanism has not been fully clarified. Here, mice were supplemented with Pediococcus acidilactici strain BT36 isolated from Tibetan plateau yogurt, with strong antioxidant activity but no chromate reduction ability for 20 days to ensure gut colonization. Strain BT36 decreased chromate accumulation, reduced oxidative stress, and attenuated histological damage in the liver of mice. 16S rRNA and metatranscriptome sequencing analysis of fecal microbiota showed that BT36 reversed Cr(VI)-induced changes in gut microbial composition and metabolic activity. Specifically, BT36 recovered the expressions of 788 genes, including 34 inherent Cr remediation-relevant genes. Functional analysis of 10 unannotated genes regulated by BT36 suggested the existence of a new Cr(VI)-reduction gene in the gut microbiota. Thus, BT36 can modulate the gut microbiota in response to Cr(VI) induced oxidative stress and protect against Cr toxicity.


Assuntos
Cromatos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo , Pediococcus acidilactici/química , Probióticos/farmacologia , Iogurte/microbiologia , Ração Animal/análise , Animais , Dieta , Camundongos , Probióticos/administração & dosagem , Tibet
11.
Bioresour Technol ; 307: 123185, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32244075

RESUMO

The inhibition of denitrification by heavy metals is a problem in nitrogen wastewater treatment, but the solutions are rarely studied. In this study, Pseudomonas brassicacearum LZ-4, immobilized in sodium alginate-kaolin, was applied in an activated-sludge reactor to protect denitrifiers from hexavalent chromium (Cr(VI)). Q-PCR result showed that the strain LZ-4 was incorporated into activated sludge under the help of immobilization. In the non-bioaugmentation system, the removal efficiency of nitrate was decreased by 86.07% by 30 mg/L Cr(VI). Whereas, denitrification was protected and 95% of nitrate was removed continuously in immobilized-cell bioaugmentation system. Miseq sequencing data showed that bioaugmentation decreased the impact of Cr(VI) on microbial communities and increased the abundance of denitrifiers. Based on the results of biomass and extracellular polymers, activated sludge was protected from Cr(VI) toxicity. This discovery will provide a feasible technique for nitrogen wastewater treatment in the presence of distressing heavy metals.


Assuntos
Metais Pesados , Purificação da Água , Reatores Biológicos , Desnitrificação , Nitrogênio , Esgotos
12.
J Hazard Mater ; 388: 122032, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955024

RESUMO

Antibiotics are widely used in livestock and poultry industries, which results in large quantities of antibiotic residues in manure that influences subsequent treatments. In this study, an Escherichia coli strain was engineered to display erythromycin esterase on its cell surface. The engineered strain (E. coli ereA) efficiently degraded erythromycin by opening the macrocyclic 14-membered lactone ring in solution. Erythromycin (50 mg/L) was completely degraded in a solution by E. coli ereA (1 × 109 CFU/mL) within 24 h. E. coli ereA retained over 86.7 % of the initial enzyme activity after 40 days of storage at 25 °C, and 78.5 % of the initial activity after seven repeated batch reactions in solution at 25 °C. Mice were fed with E. coli ereA and real-time quantitative PCR data showed that E. coli ereA colonized in the mice large intestine. The mice group fed E. coli ereA exhibited 83.13 % decrease in erythromycin levels in their feces compared with the mice group not fed E. coli ereA. E. coli ereA eliminated antibiotics from the source preventing its release into the environment. The surface-engineered strain therefore is an effective alternative agent for treating recalcitrant antibiotics, and has the potential to be applied in livestock and poultry industries.


Assuntos
Antibacterianos/farmacologia , Hidrolases de Éster Carboxílico/metabolismo , Eritromicina/farmacologia , Escherichia coli/metabolismo , Fezes/química , Microrganismos Geneticamente Modificados/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Escherichia coli/genética , Feminino , Genes Bacterianos , Intestinos , Camundongos
13.
Bioresour Technol ; 297: 122416, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786035

RESUMO

Wastes containing critical metals are generated in various fields, such as energy and computer manufacturing. Metal-bearing wastes are considered as secondary sources of critical metals. The conventional physicochemical methods of metals recovery are energy-intensive and cause further pollution. Low-cost and eco-friendly technologies including biosorbents, bioelectrochemical systems (BESs), bioleaching, and biomineralization, have become alternatives in the recovery of critical metals. However, a relatively low recovery rate and selectivity severely hinder their large-scale applications. Researchers have expanded their focus to exploit novel strain resources and strategies to improve the biorecovery efficiency. The mechanisms and potential applicability of modified biological techniques for improving the recovery of critical metals need more attention. Hence, this review summarize and compare the strategies that have been developed for critical metals recovery, and provides useful insights for energy-efficient recovery of critical metals in future industrial applications.


Assuntos
Fenômenos Biológicos , Metais
14.
Microorganisms ; 7(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547014

RESUMO

Microbial electrocatalysis is an electro reaction that uses microorganisms as a biocatalyst, mainly including microbial electrolytic cells (MEC) and microbial fuel cells (MFC), which has been used for wastewater treatment. However, the low processing efficiency is the main drawback for its practical application and the additional energy input of MEC system results in high costs. Recently, MFC/MEC coupled with other treatment processes, especially membrane bioreactors (MBR), has been used for high efficiency and low-cost wastewater treatment. In these systems, the wastewater treatment efficiency can be improved after two units are operated and the membrane fouling of MBR can also be alleviated by the electric energy that was generated in the MFC. In addition, the power output of MFC can also reduce the energy consumption of microbial electrocatalysis systems. This review summarizes the recent studies about microbial electrocatalysis systems coupled with MBR, describing the combination types and microorganism distribution, the advantages and limitations of the systems, and also addresses several suggestions for the future development and practical applications.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31297340

RESUMO

Diethylhexylphthalate (DEHP), acting as an endocrine disruptor, disturbed reproductive health. Here, we evaluated the effects of Lactobacillus plantarum TW1-1 (L. plantarum TW1-1) on DEHP-induced testicular damage in adult male mice. Results showed that oral supplementation of L. plantarum TW1-1 significantly increased the serum testosterone concentration, enhanced the semen quality, and attenuated gonad development defects in DEHP-exposed mice. L. plantarum TW1-1 also alleviated DEHP-induced oxidative stress and inflammatory responses by decreasing the mRNA expression and serum protein concentration of different inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1ß and IL-6]. Furthermore, L. plantarum TW1-1 significantly reduced DEHP-induced intestinal hyper-permeability and the increase in the serum lipopolysaccharide level. Gut microbiota diversity analysis revealed that L. plantarum TW1-1 shifted the DEHP-disrupted gut microbiota to that of the control mice. At phylum level, L. plantarum TW1-1 reversed DEHP-induced Bacteroidetes increase and Firmicutes decrease, and restored Deferribacteres in DEHP-exposed mice. Spearman's correlation analysis showed that Bacteroidetes, Deferribacteres, and Firmicutes were associated with DEHP-induced testicular damage. In addition, the ratio of Firmicutes to Bacteroidetes (Firm/Bac ratio) significantly decreased from 0.28 (control group) to 0.13 (DEHP-exposed group), which was restored by L. plantarum TW1-1 treatment. Correlation analysis showed that the Firm/Bac ratio was negatively correlated with testicular damage and inflammation. These findings suggest that L. plantarum TW1-1 prevents DEHP-induced testicular damage via modulating gut microbiota and decreasing inflammation.


Assuntos
Dietilexilftalato/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Inflamação/terapia , Lactobacillus plantarum/fisiologia , Doenças Testiculares/terapia , Testículo/efeitos dos fármacos , Animais , Bactérias/classificação , Modelos Animais de Doenças , Fezes/microbiologia , Expressão Gênica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade , Probióticos , RNA Ribossômico 16S/genética , Análise do Sêmen , Doenças Testiculares/induzido quimicamente , Testículo/patologia , Testosterona/sangue , Fator de Necrose Tumoral alfa/metabolismo
16.
Sci Total Environ ; 659: 540-547, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096383

RESUMO

Mercury is a potentially toxic trace metal that poses threats to aquatic life and to humans. In this study, a mercury-binding peptide was displayed on the surface of Escherichia coli cells using an N-terminal region ice nucleation protein anchor. The surface-engineered E. coli facilitated selective adsorption of mercury ions (Hg2+) from a solution containing various metal ions. The Hg2+ adsorption capacity of the surface-engineered cell was four-fold higher than that of the original E. coli cells. Approximately 95% of Hg2+ was removed from solution by these whole-cell sorbents. The transformed strains were fed to Carassius auratus, so that the bacteria could colonize fish intestine. Engineered bacteria-fed C. auratus showed significantly less (51.1%) accumulation of total mercury when compared with the group that had not been fed engineered bacteria. The surface-engineered E. coli effectively protected fish against the toxicity of Hg2+ in aquatic environments by adsorbing more Hg2+. Furthermore, the surface-engineered E. coli mitigated microbial diversity changes in the intestine caused by Hg2+ exposure, thereby protecting the intestinal microbial community. This strategy is a novel approach for controlling Hg2+ contamination in fish.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Carpa Dourada/metabolismo , Mercúrio/metabolismo , Peptídeos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Engenharia Genética , Mucosa Intestinal/metabolismo , Microrganismos Geneticamente Modificados/genética , Peptídeos/genética
17.
J Environ Manage ; 240: 266-272, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952047

RESUMO

Heavy metals (HMs), which accumulate in digestion substrates, such as plant residues and livestock manure, can affect biogas yields during anaerobic digestion (AD). Low concentration of Cu2+ (0-100 mg/L), Fe2+ (50-4000 mg/L), Ni2+ (0.8-50 mg/L), Cd2+ (0.1-0.3 mg/L), and Zn2+ (0-5 mg/kg) promote biogas production, while high concentrations inhibit AD. Trace amounts of HMs are necessary for the activity of some enzymes. For example, Cu2+ and Cd2+ serve as cofactors in the catalytic center of cellulase and stimulate enzyme activity. High contents of Cd2+ and Cu2+ inhibit enzyme activity by disrupting protein structures. Trace amounts of HMs stimulate the growth and activity of methanogens, while high levels have toxic effects on methanogens. HMs affect the hydrolysis, acidification, and other biochemical reactions of organics in AD by changing the enzyme structure and they also impact methanogen growth. A better understanding of the impact of HMs on AD can provide valuable insights for improving the digestion of poultry manure and plant residues contaminated with HMs, as well as help mitigate HMs pollution. Although several studies have been conducted in this field, few comprehensive reviews have examined the effect of many common HMs on AD. This review summarizes the effects of HMs on the biogas production efficiency of AD and also discusses the effects of HMs on the activities of enzymes and microbial communities.


Assuntos
Metais Pesados , Microbiota , Anaerobiose , Animais , Biocombustíveis , Esterco , Metano
18.
Ecotoxicol Environ Saf ; 169: 335-343, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458400

RESUMO

An effective bioaugmentation strategy was developed for the removal of alcohol ethoxylates (AEs) from municipal wastewater. An AE-degrading strain, Pseudomonas sp. LZ-B, was isolated from an activated sludge. Strain LZ-B was able to degrade 96.8% of 200 mg/L C12E4 (Brij 30) within 24 h and showed significant biomass increase and removal of total oxygen concentration (TOC). The optimal degradation temperature and pH value were 37 °C and 6.0, respectively. The strain demonstrated greater potential to degrade five different molecular weight AEs within 5 days. HPLC-MS/MS analysis demonstrated that the major metabolites obtained were polyethylene glycol (PEG) and carboxylated AE chains. Activated sludge has a low ability to remove AEs. After inoculation of strain LZ-B into the activated sludge reactor, Strain LZ-B successfully colonized the activated sludge, and AE removal efficiency increased to more than 95% when the hydraulic retention time (HRT) was 10 h. After strain LZ-B cleaved the AE chains, the sludge microbial communities easily removed PEG fragments to facilitate complete biodegradation of AEs. This is the first report describing bioaugmentation to increase AE degradation in an activated sludge system.


Assuntos
Reatores Biológicos/microbiologia , Polidocanol/análise , Pseudomonas/crescimento & desenvolvimento , Esgotos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biomassa , Pseudomonas/isolamento & purificação , Esgotos/microbiologia , Águas Residuárias/química
19.
Nutrients ; 11(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577661

RESUMO

Various environmental contaminants including heavy metals, pesticides and antibiotics can contaminate food and water, leading to adverse effects on human health, such as inflammation, oxidative stress and intestinal disorder. Therefore, remediation of the toxicity of foodborne contaminants in human has become a primary concern. Some probiotic bacteria, mainly Lactobacilli, have received a great attention due to their ability to reduce the toxicity of several contaminants. For instance, Lactobacilli can reduce the accumulation and toxicity of selective heavy metals and pesticides in animal tissues by inhibiting intestinal absorption of contaminants and enhancing intestinal barrier function. Probiotics have also shown to decrease the risk of antibiotic-associated diarrhea possibly via competing and producing antagonistic compounds against pathogenic bacteria. Furthermore, probiotics can improve immune function by enhancing the gut microbiota mediated anti-inflammation. Thus, these probiotic bacteria are promising candidates for protecting body against foodborne contaminants-induced toxicity. Study on the mechanism of these beneficial bacterial strains during remediation processes and particularly their interaction with host gut microbiota is an active field of research. This review summarizes the current understanding of the remediation mechanisms of some probiotics and the combined effects of probiotics and gut microbiota on remediation of foodborne contaminants in vivo.


Assuntos
Poluentes Ambientais/toxicidade , Contaminação de Alimentos , Microbioma Gastrointestinal/fisiologia , Probióticos , Animais , Antibacterianos/efeitos adversos , Diarreia/induzido quimicamente , Diarreia/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Metais Pesados/toxicidade , Praguicidas/toxicidade , Probióticos/administração & dosagem , Probióticos/farmacologia
20.
Bioresour Technol ; 269: 557-566, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219494

RESUMO

Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Lignina/metabolismo , Catálise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...