Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Anim ; 50(5): 354-61, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26643282

RESUMO

Clinical chemistry is an essential analytical tool in many areas of research, drug assessment and development, and in the evaluation of general health. A certain amount of blood is required to evaluate all blood analytes. Experiments where mice are used, it is difficult to measure all analytes due to the small amount of blood that can be obtained from a single animal. To overcome this problem, separate cohorts of animals are used in toxicity studies for hematology and biochemistry analysis. This requires the use of extra animals and additional resources. Hence interpretation of results derived from using these different animals can be unreliable. This study was undertaken to explore the possibility of using diluted plasma for measuring various biochemistry analytes. Plasma from mice was diluted to 3, 5 and 10-fold with Water for Injection, and various biochemistry analytes were analyzed using an automated analyzer. Results of diluted and undiluted plasma from the same mouse were compared. Most of the analytes from the diluted plasma were found to be well within the ranges of the undiluted plasma except for sodium, potassium and chloride. Diluting plasma to analyze some analytes also freed up undiluted plasma for analyzing electrolytes. In conclusion, in order to obtain reliable and interpretable data from a single mouse it is worthwhile considering diluting the plasma, which should reduce the number of animals used in an experiment.


Assuntos
Análise Química do Sangue/veterinária , Camundongos/metabolismo , Manejo de Espécimes/veterinária , Animais , Química Clínica , Feminino , Masculino
2.
Lab Anim ; 49(4): 311-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206586

RESUMO

Coagulation parameters are usually included in clinical and preclinical safety studies to evaluate the effect of xenobiotics on the extrinsic or intrinsic pathways of coagulation. The analysis is generally performed at the time of terminal sacrifice where many activities are scheduled. Chances of delay in analysis are likely particularly when blood is collected for coagulation via the abdominal vena cava. This experiment was planned to assess the variations in coagulation parameters caused by delay in analysis as well as by storage conditions. Blood was collected from the posterior vena cava under isoflurane anesthesia, and the plasma was separated immediately. Coagulation parameters were evaluated at 0, 6, 24 and 48 h from the plasma stored at room temperature, as well as plasma stored under refrigerated and freezing conditions. Stability of the analytes in blood was also evaluated under refrigerated conditions for 6 h. All parameters were analyzed using a semi-automated coagulometer. Prothrombin time (PT) was stable under all three storage conditions for up to 6 h. Although statistically significant differences were observed for activated partial thromboplastin time (APTT) at room and refrigeration temperatures for up to 6 h, the difference was clinically non-relevant. Fibrinogen was found to be the most stable parameter that showed consistency in results even up to 48 h under all three storage conditions. Plasma for PT can be stored and analyzed without any significant changes for up to 6 h from the actual blood collection, while fibrinogen level testing can be extended for up to 48 h after collection under any storage condition. For reliable APTT results, plasma samples should be run immediately after collection.


Assuntos
Fibrinogênio/análise , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Ratos Wistar/sangue , Manejo de Espécimes/métodos , Animais , Feminino , Masculino , Coelhos , Refrigeração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...