Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12233, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699333

RESUMO

Novel drought-tolerant grain legumes like mothbean (Vigna acontifolia), tepary bean (Phaseolus acutifolius), and guar (Cyamopsis tetragonoloba) may also serve as summer forages, and add resilience to agricultural systems in the Southern Great Plains (SGP). However, limited information on the comparative response of these species to different water regimes prevents identification of the most reliable option. This study was conducted to compare mothbean, tepary bean and guar for their vegetative growth and physiological responses to four different water regimes: 100% (control), and 75%, 50% and 25% of control, applied from 27 to 77 days after planting (DAP). Tepary bean showed the lowest stomatal conductance (gs) and photosynthetic rate (A), but also maintained the highest instantaneous water use efficiency (WUEi) among species at 0.06 and 0.042 m3 m-3 soil moisture levels. Despite maintaining higher A, rates of vegetative growth by guar and mothbean were lower than tepary bean due to their limited leaf sink activity. At final harvest (77 DAP), biomass yield of tepary bean was 38-60% and 41-56% greater than guar and mothbean, respectively, across water deficits. Tepary bean was the most drought-tolerant legume under greenhouse conditions, and hence future research should focus on evaluating this species in extensive production settings.

2.
Front Plant Sci ; 11: 618491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424910

RESUMO

Like many cereal crops, barley is also negatively affected by drought stress. However, due to its simple genome as well as enhanced stress resilient nature compared to rice and wheat, barley has been considered as a model to decipher drought tolerance in cereals. In the present study, transcriptomic and hormonal profiles along with several biochemical features were compared between drought-tolerant (Otis) and drought-sensitive (Baronesse) barley genotypes subjected to drought to identify molecular and biochemical differences between the genotypes. The drought-induced decrease in the leaf relative water content, net photosynthesis, and biomass accumulation was relatively low in Otis compared to Baronesse. The hormonal profiles did not reveal significant differences for majority of the compounds other than the GA20 and the cis-zeatin-o-glucoside (c-ZOG), whose levels were greatly increased in Otis compared to Baronesse under drought. The major differences that emerged from the transcriptome analysis are; (1), the overall number of differentially expressed genes was relatively low in drought-tolerant Otis compared to drought-sensitive Baronesse; (2), a wax biosynthesis gene (CER1), and NAC transcription factors were specifically induced in Otis but not in Baronesse; (3), the degree of upregulation of betaine aldehyde dehydrogenase and a homeobox transcription factor (genes with proven roles in imparting drought tolerance), was greater in Otis compared to Baronesse; (4) the extent of downregulation of gene expression profiles for proteins of the reaction center photosystem II (PSII) (D1 and D2) was low in Otis compared to Baronesse; and, (5), alternative splicing (AS) was also found to differ between the genotypes under drought. Taken together, the overall transcriptional responses were low in drought-tolerant Otis but the genes that could confer drought tolerance were either specifically induced or greatly upregulated in the tolerant genotype and these differences could be important for drought tolerance in barley.

3.
Plant Sci ; 242: 214-223, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566839

RESUMO

Recent investigations revealed that microRNAs (miRNAs) play crucial roles in plant acclimation to stress conditions. Switchgrass, one of the important biofuel crop species can withstand hot and dry climates but the molecular basis of stress tolerance is relatively unknown. To identify miRNAs that are important for tolerating drought or heat, small RNAs were profiled in leaves of adult plants exposed to drought or heat. Sequence analysis enabled the identification of 29 conserved and 62 novel miRNA families. Notably, the abundances of several conserved and novel miRNAs were dramatically altered following drought or heat. Using at least one fold (log2) change as cut off, we observed that 13 conserved miRNA families were differentially regulated by both stresses, and, five and four families were specifically regulated by drought and heat, respectively. Similarly, using a more stringent cut off of two fold (log2) regulation, we found 5 and 16 novel miRNA families were upregulated but 6 and 7 families were downregulated under drought and heat, respectively. The stress-altered expression of a subset of miRNAs and their targets was confirmed using quantitative PCR. Overall, the switchgrass plants exposed to drought or heat revealed similarities as well as differences with respect to miRNA regulation, which could be important for enduring different stress conditions.


Assuntos
Secas , Temperatura Alta , MicroRNAs/genética , Panicum/genética , RNA de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Bases , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/genética
4.
BMC Plant Biol ; 13: 153, 2013 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-24093800

RESUMO

BACKGROUND: Global warming predictions indicate that temperatures will increase by another 2-6°C by the end of this century. High temperature is a major abiotic stress limiting plant growth and productivity in many areas of the world. Switchgrass (Panicum virgatum L.) is a model herbaceous bioenergy crop, due to its rapid growth rate, reliable biomass yield, minimal requirements of water and nutrients, adaptability to grow on marginal lands and widespread distribution throughout North America. The effect of high temperature on switchgrass physiology, cell wall composition and biomass yields has been reported. However, there is void in the knowledge of the molecular responses to heat stress in switchgrass. RESULTS: We conducted long-term heat stress treatment (38°/30°C, day/night, for 50 days) in the switchgrass cultivar Alamo. A significant decrease in the plant height and total biomass was evident in the heat stressed plants compared to controls. Total RNA from control and heat stress samples were used for transcriptome analysis with switchgrass Affymetrix genechips. Following normalization and pre-processing, 5365 probesets were identified as differentially expressed using a 2-fold cutoff. Of these, 2233 probesets (2000 switchgrass unigenes) were up-regulated, and 3132 probesets (2809 unigenes) were down-regulated. Differential expression of 42 randomly selected genes from this list was validated using RT-PCR. Rice orthologs were retrieved for 78.7% of the heat stress responsive switchgrass probesets. Gene ontology (GOs) enrichment analysis using AgriGO program showed that genes related to ATPase regulator, chaperone binding, and protein folding was significantly up-regulated. GOs associated with protein modification, transcription, phosphorus and nitrogen metabolic processes, were significantly down-regulated by heat stress. CONCLUSIONS: Plausible connections were identified between the identified GOs, physiological responses and heat response phenotype observed in switchgrass plants. Comparative transcriptome analysis in response to heat stress among four monocots - switchgrass, rice, wheat and maize identified 16 common genes, most of which were associated with protein refolding processes. These core genes will be valuable biomarkers for identifying heat sensitive plant germplasm since they are responsive to both short duration as well as chronic heat stress treatments, and are also expressed in different plant growth stages and tissue types.


Assuntos
Panicum/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Oryza/genética , Oryza/fisiologia , Panicum/fisiologia , Proteínas de Plantas/genética , Transcriptoma , Triticum/genética , Triticum/fisiologia
5.
J Plant Physiol ; 168(18): 2169-76, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21835494

RESUMO

Among C4 species, sorghum is known to be more drought tolerant than maize. The objective was to evaluate differences in leaf gas exchanges, carbohydrates, and two enzyme activities of these nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) C4 subtype monocots in response to water deficit and CO2 concentration ([CO2]). Maize and sorghum were grown in pots in sunlit environmental-controlled chambers. Treatments included well watered (WW) and water stressed (WS) (water withheld at 26 days) and daytime [CO2] of 360 (ambient) and 720 (elevated) µmol mol⁻¹. Midday gas exchange rates, concentrations of nonstructural carbohydrates, and activities of sucrose-phosphate synthase (SPS) and adenosine 5'-diphosphoglucose pyrophosphorylase (ADGP) were determined for fully expanded leaf sections. There was no difference in leaf CO2 exchange rates (CER) between ambient and elevated [CO2] control plants for both maize and sorghum. After withholding water, leaf CER declined to zero after 8 days in maize and 10 days for sorghum. Sorghum had lower stomatal conductance and transpiration rates than maize, which resulted in a longer period of CER under drought. Nonstructural carbohydrates of both control maize and sorghum were hardly affected by elevated [CO2]. Under drought, however, increases in soluble sugars and decreases in starch were generally observed for maize and sorghum at both [CO2] levels. For stressed maize and sorghum, decreases in starch occurred earlier and were greater at ambient [CO2] than at elevated [CO2]. For maize, drought did not meaningfully affect SPS activity. However, a decline in SPS activity was observed for drought-stressed sorghum under both [CO2] treatments. There was an increase in ADGP activity in maize under drought for both [CO2] treatments. Such a response in ADGP to drought, however, did not occur for sorghum. The generally more rapid response of maize than sorghum to drought might be related to the more rapid growth of leaf area of maize.


Assuntos
Dióxido de Carbono/metabolismo , Secas , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Sorghum/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo
6.
J Plant Physiol ; 168(16): 1909-18, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21676489

RESUMO

Maize and grain sorghum seeds were sown in pots and grown for 39 days in sunlit controlled-environment chambers at 360 (ambient) and 720 (double-ambient, elevated)µmol mol(-1) carbon dioxide concentrations [CO(2)]. Canopy net photosynthesis (PS) and evapotranspiration (TR) was measured throughout and summarized daily from 08:00 to 17:00h Eastern Standard Time. Irrigation was withheld from matched pairs of treatments starting on 26 days after sowing (DAS). By 35 DAS, cumulative PS of drought-stress maize, compared to well-watered plants, was 41% lower under ambient [CO(2)] but only 13% lower under elevated [CO(2)]. In contrast, by 35 DAS, cumulative PS of drought-stress grain sorghum, compared to well-watered plants, was only 9% lower under ambient [CO(2)] and 7% lower under elevated [CO(2)]. During the 27-35 DAS drought period, water use efficiency (WUE, mol CO(2)Kmol(-1)H(2)O), was 3.99, 3.88, 5.50, and 8.65 for maize and 3.75, 4.43, 5.26, and 9.94 for grain sorghum, for ambient-[CO(2)] well-watered, ambient-[CO(2)] stressed, elevated-[CO(2)] well-watered and elevated-[CO(2)] stressed plants, respectively. Young plants of maize and sorghum used water more efficiently at elevated [CO(2)] than at ambient [CO(2)], especially under drought. Reductions in biomass by drought for young maize and grain sorghum plants were 42 and 36% at ambient [CO(2)], compared to 18 and 14% at elevated [CO(2)], respectively. Results of our water stress experiment demonstrated that maintenance of relatively high canopy photosynthetic rates in the face of decreased transpiration rates enhanced WUE in plants grown at elevated [CO(2)]. This confirms experimental evidence and conceptual models that suggest that an increase of intercellular [CO(2)] (or a sustained intercellular [CO(2)]) in the face of decreased stomatal conductance results in relative increases of growth of C(4) plants. In short, drought stress in C(4) crop plants can be ameliorated at elevated [CO(2)] as a result of lower stomatal conductance and sustaining intercellular [CO(2)]. Furthermore, less water might be required for C(4) crops in future higher CO(2) atmospheres, assuming weather and climate similar to present conditions.


Assuntos
Dióxido de Carbono/farmacologia , Fotossíntese/fisiologia , Sorghum/fisiologia , Água/farmacologia , Zea mays/fisiologia , Adaptação Fisiológica , Transporte Biológico/efeitos dos fármacos , Biomassa , Secas , Luz , Malato Desidrogenase/metabolismo , Modelos Biológicos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Sorghum/enzimologia , Sorghum/metabolismo , Sorghum/efeitos da radiação , Estresse Fisiológico , Fatores de Tempo , Zea mays/efeitos dos fármacos , Zea mays/enzimologia , Zea mays/efeitos da radiação
7.
J Photochem Photobiol B ; 100(3): 135-46, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20605100

RESUMO

The carbon dioxide concentration [CO(2)], temperature and ultraviolet B radiation (UVB) are concomitant factors projected to change in the future environment, and their possible interactions are of significant interest to agriculture. The objectives of this study were to evaluate interactive effects of atmospheric [CO(2)], temperature, and UVB radiation on growth, physiology and reproduction of cowpea genotypes and to identify genotypic tolerance to multiple stressors. Six cowpea (Vigna unguiculata [L.] Walp.) genotypes differing in their sites of origin were grown in sunlit, controlled environment chambers. The treatments consisted of two levels each of atmospheric [CO(2)] (360 and 720 micromol mol(-1)), UVB [0 and 10 kJ m(-2)d(-1)) and temperatures [30/22 and 38/30 degrees C] from 8 days after emergence to maturity. The ameliorative effects of elevated [CO(2)] on increased UVB radiation and temperature effects were observed for most of the vegetative and photosynthetic traits but not for pollen production, pollen viability and yield attributes. The combined stress response index (C-TSRI) derived from vegetative (V-TSRI) and reproductive (R-TSRI) parameters revealed that the genotypes responded negatively with varying magnitude of responses to the stressors. Additionally, in response to multiple abiotic stresses, the vegetative traits diverged from that of reproductive traits, as deduced from the positive V-TSRI and negative R-TSRI observed in most of the genotypes and poor correlation between these two processes. The UVB in combination with increased temperature caused the greatest damage to cowpea vegetative growth and reproductive potential. The damaging effects of high temperature on seed yield was not ameliorated by elevated [CO(2)]. The identified tolerant genotypes and groups of plant attributes could be used to develop genotypes with multiple abiotic stress tolerance.


Assuntos
Fabaceae/crescimento & desenvolvimento , Estresse Fisiológico , Dióxido de Carbono/farmacologia , Exposição Ambiental , Fabaceae/genética , Fabaceae/efeitos da radiação , Genótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Pólen/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Pólen/efeitos da radiação , Temperatura , Raios Ultravioleta
8.
Photochem Photobiol ; 79(5): 416-27, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15191050

RESUMO

Current conditions of 2-11 kJ m(-2) day(-1) of UV-B radiation and temperatures of >30 degrees C during flowering in cotton cultivated regions are projected to increase in the future. A controlled environment study was conducted in sunlit growth chambers to determine the effects of UV-B radiation and temperature on physiology, growth, development and leaf hyperspectral reflectance of cotton. Plants were grown in the growth chambers at three day/night temperatures (24/16 degrees C, 30/22 degrees C and 36/28 degrees C) and three levels of UV-B radiation (0, 7 and 14 kJ m(-2) day(-1)) at each temperature from emergence to 79 days under optimum nutrient and water conditions. Increases in main stem node number and the node of first fruiting branch and decrease in duration to first flower bud (square) and flower were recorded with increase in temperature. Main effects of temperature and UV-B radiation were significant for net photosynthetic rates, stomatal conductance, total chlorophyll and carotenoid concentrations of uppermost, fully expanded leaves during squaring and flowering. A significant interaction between temperature and UV-B radiation was detected for total biomass and its components. The UV-B radiation of 7 kJ m(-2) day(-1) reduced boll yield by 68% and 97% at 30/22 degrees C and 36/28 degrees C, respectively, compared with yield at 0 kJ m(-2) day(-1) and 30/22 degrees C. No bolls were produced in the three temperature treatments under 14 kJ m(-2) day(-1) UV-B radiation. The first-order interactions between temperature, UV-B radiation and leaf age were significant for leaf reflectance. This study suggests a growth- and process-related temperature dependence of sensitivity to UV-B radiation.


Assuntos
Gossypium/efeitos da radiação , Folhas de Planta/fisiologia , Temperatura , Raios Ultravioleta , Dióxido de Carbono/metabolismo , Flores/fisiologia , Flores/efeitos da radiação , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Reprodução/fisiologia , Reprodução/efeitos da radiação
9.
Physiol Plant ; 121(2): 250-257, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15153192

RESUMO

The objectives of this study were to determine the effects of UV-B radiation and atmospheric carbon dioxide concentrations ([CO(2)]) on leaf senescence of cotton by measuring leaf photosynthesis and chlorophyll content and to identify changes in leaf hyperspectral reflectance occurring due to senescence and UV-B radiation. Plants were grown in controlled-environment growth chambers at two [CO(2)] (360 and 720 micro mol mol(-1)) and three levels of UV-B radiation (0, 7.7 and 15.1 kJ m(-2) day(-1)). Photosynthesis, chlorophyll, carotenoids and phenolic compounds along with leaf hyperspectral reflectance were measured on three leaves aged 12, 21 and 30 days in each of the treatments. No interaction was detected between [CO(2)] and UV-B for any of the measured parameters. Significant interactions were observed between UV-B and leaf age for photosynthesis and stomatal conductance. Elevated [CO(2)] enhanced leaf photosynthesis by 32%. On exposure to 0, 7.7 and 15.1 kJ of UV-B, the photosynthetic rates of 30-day-old leaves compared with 12-day-old leaves were reduced by 52, 76 and 86%, respectively. Chlorophyll pigments were not affected by leaf age at UV-B radiation of 0 and 7.7 kJ, but UV-B of 15.1 kJ reduced the chlorophylls by 20, 60 and 80% in 12, 21 and 30-day-old leaves, respectively. The hyperspectral reflectance between 726 and 1142 nm showed interaction for UV-B radiation and leaf age. In cotton, leaf photosynthesis can be used as an indicator of leaf senescence, as it is more sensitive than photosynthetic pigments on exposure to UV-B radiation. This study revealed that, cotton leaves senesced early on exposure to UV-B radiation as indicated by leaf photosynthesis, and leaf hyperspectral reflectance can be used to detect changes caused by UV-B and leaf ageing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...