Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacogn Mag ; 12(Suppl 4): S488-S496, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27761080

RESUMO

BACKGROUND: Cyperus scariosus R. Br and Cyperus rotundus L are widely used in ayurvedic preparation for the treatment of diabetes and other diseases. The early literature, so far, does not indicate the presence of any bioactive principle isolated from these plants. OBJECTIVE: To identify free radical scavenging, anti-diabetic and anti- inflammatory principles from these two species. MATERIALS AND METHODS: The bioassay guided fractionation and isolation of active constituents was done by chromatographic techniques. They also evaluated their anti-oxidant activity by DPPH and ABTS. The anti-diabetic activity was screened by α- glucosidase and α- amylase assays. Also, the further evaluation of in vitro anti-inflammatory activity using THP-1 monocytic cells and in vivo anti- inflammatory activity, was confirmed by carrageenan induced rat paw edema as model. RESULTS: The activity guided isolation led to isolation of twelve compounds Which are: Stigmasterol[1], ß- sitosterol[2], Lupeol[3], Gallic acid[4], Quercetin[5], ß- amyrin[6], Oleanolic acid[7], ß- amyrin acetate[8], 4- hydroxyl butyl cinnamate[9], 4- hydroxyl cinnamic acid[10], Caffeic acid,[11] and Kaempferol[12] respectively. Among the isolates, the compounds 4 and 5 displayed potent radical scavenging activity with an IC50 values of 0.43 and 0.067 ΅g/ml. The compounds 4, 5 and 10 showed significant anti-diabetic activities. while lupeol[3] showed potent IL-1 ß activity inhibition in THP-1 monocytic cells and also displayed significant (p<0.0025) in vivo anti-inflammatory activity. CONCLUSION: Inbrief, we isolated twelve compounds from both the species. Collectively, our results suggested that aromatic compounds showed good anti-oxidant and anti-diabetic activities. SUMMARY: The study investigates the free radical scavenging, α-glucosidase inhibitory and anti-inflammatory effects of constituents isolated from Indian sedges viz. C. scariosus and C. rotundus. The results indicated that phenolic compounds displayed potent fee radical scavenging activty and alpha-glucosidase inhibition activity. While terpene constituent, Lupeol[3] showed good IL-1ß activity inhibition in THP-1 monocytic cells and also displayed significant (p<0.0025) in vivo anti inflammatory activity in carrageenan induced rat paw edema. However, further studies are required to know the exact molecular mechanism. Abbreviations used: DPPH: 2,2- Diphenyl-1-1-picryl hydrazyl, ABTS: 2,2-Azinobis-3-ethylbenzo thiazoline-6-sulfonic acid, THP-1: Human leukaemia monocytic cell line, IL-1ß: Interleukin-1ß, IC50-Inhibitory concentration 50%.

2.
Bioinformation ; 12(7): 347-353, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28246464

RESUMO

RNA helicase, DDX3 is a multifunctional enzyme and is known to be associated with several diseases like HIV progression, brain and breast cancer. Some of the ring expanded nucleoside compounds such as REN: NZ51, fused di imidazodiazepine ring (RK33), (Z)-3-(5- (3-bromo benzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(2- hydroxy phenyl) propanamide compound (FE15) have been documented to inhibit DDX3 helicase activity. However, synthesis of these drugs is limited to few research groups. Prevalence of literature study, we found that doxorubicin form strong hydrogen bond interactions with crystallized form of DDX3 using in-silico molecular docking approach. To evaluate the biological inhibitory action of doxorubicin, we performed the ATPase activity assay and anti-cancer activity using H357 cancer cell lines. Results showed that doxorubicin continually declined the inorganic phosphate (Pi) release and inhibited the ATP hydrolysis by directly interacting with DDX3. Anticancer activity was detected by MTT assay. The half maximal inhibitory concentrations of doxorubicin (IC50) for H357 cancer cell line is 50 µM and also doxorubicin significantly down regulated the expression of DDX3. Taken together, our results demonstrate, that inhibition of DDX3 expression by using doxorubicin can be used as an ideal drug candidate to treat DDX3 associated cancer disorder by interacting with unique amino acid residues (Thr 198) and common amino acid residues (Tyr 200 and Thr 201).

3.
J Microencapsul ; 32(6): 578-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218628

RESUMO

CONTEXT: Vitamins have been shown to reduce chemotherapy-related fatigue (CRF) by conserving energy loss both during and after cancer treatment. However, it remains unknown whether this reduction of fatigue interferes with the cancer drugs or alters the effectiveness of these agents. OBJECTIVES: The objective was to synthesize vitamin-cisplatin-loaded chitosan nano-particles for chemoprevention and cancer fatigue. MATERIALS AND METHODS: Multi-vitamin (C, D3, and B12)-cisplatin composite nano-formulation called NanoCisVital (NCV) to overcome CRF. The interactions between vitamins and NCV were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and a particle size analyser. The chemo-preventive activity was performed by in vitro bio assays. RESULTS: SEM analysis showed spherical shape and the size is < 225 nm. NCV inhibited the proliferating yeast cells as well as denaturation of bovine serum albumin, and it also reduced the sprouting of new blood vessels in dose-dependent manner. CONCLUSION: Collectively, these results demonstrate that the NCV particles can be used to reduce CRF without much affecting the anti-cancer properties of cisplatin.


Assuntos
Anticarcinógenos/química , Quitosana/química , Cisplatino/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Vitaminas/química , Inibidores da Angiogênese/química , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Bioensaio , Bovinos , Proliferação de Células , Fadiga/induzido quimicamente , Fadiga/complicações , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Neoplasias/complicações , Tamanho da Partícula , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vitaminas/uso terapêutico
4.
Pharmacogn Mag ; 11(Suppl 3): S439-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26929579

RESUMO

BACKGROUND: Cyperus scariosus (CS) R.Br and Cyperus rotundus (CR) L. belongs to Cyperaceae family which is well-reputed in the traditional systems of medicine. Although they grow in different agro-climatic conditions, they are often considered to be synonymous with each other. OBJECTIVE: The present study was aimed to systematically classify both the species CS and CR through their morphological features and chemical profiling using liquid chromatography-mass spectroscopy (LC-MS), gas chromatography-mass spectroscopy (GC-MS) and thin layer chromatography patterns of the rhizome extracts. MATERIALS AND METHODS: A method (LC-MS analysis) has been developed on Agilent LC-MSD Trap SL mass spectrometer equipped with Waters HR C18 column (3.9 mm × 300 mm, 6 µm) using isocratic elution with acetonitrile and water (70:30% v/v ratio). GC-MS analysis was performed on a Shimadzu GC-MS-QP 2010 equipped with DB-5 capillary column (30 m × 0.25 mm × 0.25 µm). RESULTS: Chemoprofiling of CS and CR using LC-MS and GC-MS suggested that these two are different based on their deferential spectral pattern, however, some of the common peaks were found in both the species. In addition, we also performed the preliminary phytochemical investigation of hexane and chloroform extracts of these species, which led to the isolation of stigmasterol, ß-sitosterol and lupeol as major constituents in CS. CONCLUSION: In summary, we have developed optimal chromatographic conditions (LC-MS and GC-MS) and morphological profiles to classify both the species, that is, CS and CR. Collectively, our analytical results coupled with the morphological data clearly suggested that CS and CR are morphologically different. SUMMARY: The huge demand for herbal medicine has put pressure on the supply of natural resources which ultimately results in use of substandard materials or substitution and adulteration. The medicinal plants, Cyperus rotundus L and Cyperus scariosus R.Br which belongs to cyperaceae family and extensively used in the traditional systems of medicine. Although these two species are grown in different soil conditions, Cyperus scariosus R.Br often treated as synonymous of Cyperus rotundus. Thus, the present study was undertaken to classify these two species systematically using the modern analytical techniques as a powerful tools. Further, we also carried out the preliminary phytochemical investigation of hexane and chloroform extracts of cyperus scariosus rhizomes, which resulted in the isolation of three compounds namely Sitosterol, Stigmasterol and Lupeol.

5.
Bioinformation ; 10(10): 637-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489173

RESUMO

Cyperus scariosus (R.Br) belongs to the family Cyperaceae and it has a diverse medicinal importance. To identify human cyclooxegenase-2 (COX-2) inhibitors from C. scariosus, the rhizome powder was exhaustively extracted with various solvents based on the increasing polarity. Based on the presence and absence of secondary metabolites, we have selected the methanolic extract to evaluate the anti-oxidant and anti-inflammatory activity. The same extract was further subjected to gas chromatography-mass spectroscopy (GC-MS) analysis to identify the active compounds. Binding affinities of these compounds towards anti-inflammatory protein COX-2 were analyzed using molecular docking interaction studies. Phytochemical analysis showed that methanol extract is positive for all secondary metabolites. The antioxidant activity of the C. scariosus rhizomes methanolic extract (CSRME) is half to that of ascorbic acid at 50 µg/ml. The anti-inflammatory activity of CSRME is higher than that of diclofenac sodium salt at high concentration, which is evident from the dose dependent inhibition of bovine serum albumin denaturation at 40 µg/ml-5 mg/ml. GC-MS analysis showed the presence of nine compounds, among all N-methyl-1-adamantaneacetamide and 1,5,diphenyl-2H-1,2,4- triazine form a hydrogen bond interactions with Ser-530 and Tyr-385 respectively and found similar interactions with crystal structure of diclofenac bound COX-2 protein. Benzene-1, 2-diol, 4-(4-bromo-3 chlorophenyl iminomethyl forms hydrogen bond interactions with Thr-199 and Thr-200 as similar to crystallized COX-2 protein with valdecoxib. Collectively our results suggest that CSRME contains medicinally important anti-inflammatory compounds and this justifies the use of this plant as a folklore medicine for preventing inflammation associated disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...