Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21374, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494492

RESUMO

Palpation is widely used as the initial medical diagnosis. Integration of micro tactile sensors and artificial muscles enables a soft microfinger for active touch sensing using its bending actuation. Active touch sensing by pushing-in motion of microfinger enables to evaluate stiffness distribution on an elastic object. Due to its compactness, the microfinger can enter a narrow space, such as gastrointestinal and abdominal spaces in a body. However, a microfinger can only touch and sense limited points. We aim at efficient method for searching a stiffness singular part in an elastic object by the directional touch sensing of a microfinger. This study presents a microfinger for active touch sensing using bending and push-in actuation and proposes an algorithm utilizing directivity in touch sensing by a microfinger for efficient localization of the stiffness singular part in an object. A gelatin block structure with a small rigid ball was prepared and touch sensed by the microfinger. Consequently, the position of the buried rigid ball could be efficiently identified based on the proposed algorithm. This result implies that the proposed method has potential applications in endoscopic medical diagnosis, particularly in identifying tumor positions.


Assuntos
Percepção do Tato , Tato , Palpação/métodos , Endoscopia , Algoritmos
2.
Sci Rep ; 12(1): 16963, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216851

RESUMO

Human-robot interaction technology has contributed to improving sociality for humanoid robots. At scales far from human scales, a microrobot can interact with an environment in a small world. Microsensors have been applied to measurement of forces by flying or walking insects. Meanwhile, most previous works focused on the measurement of the behavior of insects. Here, we propose microrobot-insect interactions by soft microfingers integrated with artificial muscle actuators and tactile sensors, which has been developed for a haptic teleoperation robot system. A soft pneumatic balloon actuator acts as the artificial muscle, and a flexible strain sensor using a liquid metal provides tactile sensing. Force interaction between a pill bug and the microfinger could be accomplished. The microfinger (12 mm × 3 mm × 490 µm) can move and touch an insect, and it can detect reaction force from an insect. The measured reaction force from the legs of a pill bug as a representative insect was less than 10 mN. This paper presents a microfinger as an end effector for the active sensing of reaction force from a small insect. We anticipate that our results will lead to further evaluation of small living things as well as technology development for human-environment interaction.


Assuntos
Robótica , Percepção do Tato , Animais , Humanos , Insetos , Fenômenos Mecânicos , Tato
3.
Sci Rep ; 12(1): 4534, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296754

RESUMO

Multiple sensors and actuators integrated in a small space, especially an elongated thin structure, require equivalent number of signal lines between microdevices, but there is limited space for signal wires. Thus, we propose a mechanism using a single microchannel where a liquid metal droplet moves and shuttles. A shuttling droplet switches multiple terminals of signal lines along a microchannel based on a traditional switching mechanism using a liquid metal droplet. Electrically conductive gallium alloy liquid metals (Galinstan) can flow in a microchannel due to their fluidity. The terminals consist of opposing electrode pairs in a microchannel. A change in a variable impedance connected to a terminal as a pseudo sensor can be read when a droplet flows in and connects electrode pairs. This paper presents switching and addressing objective terminals of chromium electrodes by a shuttling conductive droplet (500 µm in diameter and 10 mm long) in a microchannel (500 µm in diameter and 100 mm long). A demonstrated simple mechanism enables communication between multiple microdevices along a microchannel. We anticipate wide application of proposed mechanism toward a multiplexer, especially in microfluidic devices because of the advantages of utilizing microchannels as common microstructures for both microdevices and signal lines.

4.
Sci Rep ; 11(1): 7048, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782452

RESUMO

Gallium alloy liquid metals (Galinstan) possessing fluidity, electric conductivity, and low toxicity are attractive for use in flexible devices and microfluidic devices. However, the oxide skin of Galinstan in the atmosphere adheres to the microchannel surface, preventing the transportation of Galinstan in the channel. To tackle the problem of the adhesion of Galinstan to microchannel, we introduced liquid with Galinstan into a channel with a diameter of 1000 µm. Then, we found that the cylindrical shape of the channel enabled smooth transportation of Galinstan independently of both the liquid and the channel material. The liquid introduced with Galinstan not only prevents adhesion but also improves the spatial controllability of Galinstan in the channel. We can control the position of Galinstan with 100 µm resolution using highly viscous (> 10 cSt) liquid. In addition, we combined the microchannel with patterned electrodes, fabricating a serially arranged capacitive device. The local capacitance detected by the patterned electrodes changed by more than 6% via the smooth transportation of Galinstan. The analysis results based on an equivalent circuit quantitatively agree with our experimental results. We can modulate the serially arranged capacitors using the smooth transportation of Galinstan in the channel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...