Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34333, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100447

RESUMO

Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.

2.
Infect Genet Evol ; 123: 105645, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067582

RESUMO

Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.


Assuntos
Mycobacterium , Ribonucleases , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium/genética , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Filogenia , Ribonucleases/metabolismo , Ribonucleases/genética
3.
Front Cell Infect Microbiol ; 13: 1173894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545854

RESUMO

Mycobacteriophages are viruses that infect members of genus Mycobacterium. Because of the rise in antibiotic resistance in mycobacterial diseases such as tuberculosis, mycobacteriophages have received renewed attention as alternative therapeutic agents. Mycobacteriophages are highly diverse, and, on the basis of their genome sequences, they are grouped into 30 clusters and 10 singletons. In this article, we have described the isolation and characterization of a novel mycobacteriophage Kashi-VT1 (KVT1) infecting Mycobacterium >smegmatis mc2 155 (M. smegmatis) and Mycobacterium fortuitum isolated from Varanasi, India. KVT1 is a cluster K1 temperate phage that belongs to Siphoviridae family as visualized in transmission electron microscopy. The phage genome is 61,010 base pairs with 66.5% Guanine/Cytosine (GC) content, encoding 101 putative open reading frames. The KVT1 genome encodes an immunity repressor, a tyrosine integrase, and an excise protein, which are the characteristics of temperate phages. It also contains genes encoding holin, lysin A, and lysin B involved in host cell lysis. The one-step growth curve demonstrated that KVT1 has a latency time of 90 min and an average burst size of 101 phage particles per infected cell. It can withstand a temperature of up to 45°C and has a maximum viability between pH 8 and 9. Some mycobacteriophages from cluster K are known to infect the pathogenic Mycobacterium tuberculosis (M. tuberculosis); hence, KVT1 holds potential for the phage therapy against tuberculosis, and it can also be engineered to convert into an exclusively lytic phage.


Assuntos
Bacteriófagos , Micobacteriófagos , Mycobacterium tuberculosis , Tuberculose , Humanos , Micobacteriófagos/genética , Genoma Viral , Mycobacterium tuberculosis/genética , Mycobacterium smegmatis/genética , Tuberculose/genética , Bacteriófagos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA