Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 192: 106705, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761892

RESUMO

This study aimed to investigate the potential of cinnamon oil nanoemulsion (CONE) as an antibacterial agent against clinical strains of colistin-resistant Klebsiella pneumoniae and its anticancer activity. The prepared and characterized CONE was found to have a spherical shape with an average size of 70.6 ± 28.3 nm under TEM and a PDI value of 0.076 and zeta potential value of 6.9 mV using DLS analysis. The antibacterial activity of CONE against Klebsiella pneumoniae strains was investigated, and it was found to have higher inhibitory activity (18.3 ± 1.2-30.3 ± 0.8 mm) against the tested bacteria compared to bulk cinnamon oil (14.6 ± 0.88-20.6 ± 1.2) with MIC values ranging from 0.077 to 0.31 % v/v which equivalent to 0.2-0.82 ng/ml of CONE. CONE inhibited the growth of bacteria in a dose and time-dependent manner based on the time-kill assay in which Klebsiella pneumoniae B-9 was used as a model among the bacterial strains under investigation. The study also investigated the expression of the mcr-1 gene in the Klebsiella pneumoniae strains and found that all strains were positive for the gene expression and subsequently its presence. The level of mcr-1 gene expression among the B-2, B-4, B-9, and B-11 control strains and that treated with colistin was similar, but it was different in both B-5 and B-2. However, all strains exhibited a significant downregulation in gene expression (ranging from 3.97 to 8.7-fold) after their treatment with CONE. Additionally, the CONE-treated bacterial cells appeared with a great deformation compared with control cells under TEM. Finally, CONE exhibited selective toxicity against different cancer cell lines depending on comparison with the normal cell lines.

2.
BMC Biotechnol ; 24(1): 11, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443850

RESUMO

BACKGROUND: One of the current challenges is to secure wheat crop production to meet the increasing global food demand and to face the increase in its purchasing power. Therefore, the current study aimed to exploit a new synthesized nanocomposite to enhance wheat growth under both normal and drought regime. The effectiveness of this nanocomposite in improving the microbiological quality of irrigation water and inhibiting the snail's growth was also assessed. RESULTS: Upon the employed one-step synthesis process, a spherical Fe/Cu/P nanocomposite was obtained with a mean particle size of 4.35 ± 1.524 nm. Cu2+, Fe2+, and P4+ were detected in the dried nanocomposite at 14.533 ± 0.176, 5.200 ± 0.208, and 34.167 ± 0.203 mg/ml concentration, respectively. This nanocomposite was found to exert antibacterial activity against Escherichia coli and Salmonella typhi. It caused good inhibition percent against Fusarium oxysporum (43.5 ± 1.47%) and reduced both its germination rate and germination efficiency. The lethal concentration 50 (LC50) of this nanocomposite against Lanistes carinatus snails was 76 ppm. The treated snails showed disturbance in their feeding habit and reached the prevention state. Significant histological changes were observed in snail digestive tract and male and female gonads. Drought stress on wheat's growth was mitigated in response to 100 and 300 ppm treatments. An increase in all assessed growth parameters was reported, mainly in the case of 100 ppm treatment under both standard and drought regimes. Compared to control plants, this stimulative effect was accompanied by a 2.12-fold rise in mitotic index and a 3.2-fold increase in total chromosomal abnormalities. CONCLUSION: The finding of the current study could be employed to mitigate the effect of drought stress on wheat growth and to enhance the microbiological quality of irrigation water. This is due to the increased efficacy of the newly synthesized Fe/Cu/P nanocomposite against bacteria, fungi, and snails. This methodology exhibits potential for promoting sustainable wheat growth and water resource conservation.


Assuntos
Anti-Infecciosos , Triticum , Cobre/farmacologia , Escherichia coli , Água , Fosfatos , Ferro
3.
Synth Syst Biotechnol ; 9(2): 196-208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385149

RESUMO

The goal of this study was to use statistical optimization to change the nutritional and environmental conditions so that Streptomyces baarensis MH-133 could make more active metabolites. Twelve trials were used to screen for critical variables influencing productivity using the Placket-Burman Design method. S. baarensis MH-133 is significantly influenced by elicitation, yeast extract, inoculum size, and incubation period in terms of antibacterial activity. A total of 27 experimental trials with various combinations of these factors were used to carry out the response surface technique using the Box-Behnken design. The analyses revealed that the model was highly significant (p < 0.001), with a lack-of-fit of 0.212 and a coefficient determination (R2) of 0.9224. Additionally, the model predicted that the response as inhibition zone diameter would reach a value of 27 mm. Under optimal conditions, S. baarensis MH-133 produced 18.0 g of crude extract to each 35L and was purified with column chromatography. The active fraction exhibiting antibacterial activity was characterized using spectroscopic analysis. The MIC and MBC values varied between 37.5 and 300 µg/ml and 75 and 300 µg/ml, respectively. In conclusion, the biostatistical optimization of the active fraction critical variables, including environmental and nutritional conditions, enhances the production of bioactive molecules by Streptomyces species.

4.
Food Chem ; 438: 137869, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37992601

RESUMO

This study aimed to develop simple, fast, and sensitive methods for the determination of diquat (DQ) in various matrices such as water and beverages. For water, direct injection was tested first, however, the sensitivity of the incurred samples were too low and couldn't possibly achieve the targeted limit of quantification. Hence, dilution with "weaker" injection solvents were tested, and the final conditions involved the dilution of water with acetonitrile (0.4 % ammonium hydroxide) which increased the sensitivity by more than ten times. Nevertheless, the beverages samples needed further treatment to achieve acceptable spiked recovery. The final conditions involved extraction using the aforementioned solvent, followed by heating and partitioning. Both of the methods satisfied the validation requirements, with an average recovery ranging from 85.9 to115 % and associated relative standard deviation (RSD %) within the range 3-8. Further applications on real samples were done to test the levels of contamination.


Assuntos
Diquat , Espectrometria de Massa com Cromatografia Líquida , Diquat/análise , Cromatografia Líquida/métodos , Água , Espectrometria de Massas em Tandem/métodos , Bebidas/análise , Solventes
5.
Mar Drugs ; 21(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623718

RESUMO

The marine environment is a rich source of bioactive compounds. Therefore, the sea cucumber was isolated from the Red Sea at the Al-Ain Al-Sokhna coast and it was identified as surf redfish (Actinopyga mauritiana). The aqueous extract of the surf redfish was utilized as an ecofriendly, novel and sustainable approach to fabricate zinc oxide nanoparticles (ZnO-NPs). The biosynthesized ZnO-NPs were physico-chemically characterized and evaluated for their possible antibacterial and insecticidal activities. Additionally, their safety in the non-target organism model (Nile tilapia fish) was also investigated. ZnO-NPs were spherical with an average size of 24.69 ± 11.61 nm and had a peak at 350 nm as shown by TEM and UV-Vis, respectively. XRD analysis indicated a crystalline phase of ZnO-NPs with an average size of 21.7 nm. The FTIR pattern showed biological residues from the surf redfish extract, highlighting their potential role in the biosynthesis process. DLS indicated a negative zeta potential (-19.2 mV) of the ZnO-NPs which is a good preliminary indicator for their stability. ZnO-NPs showed larvicidal activity against mosquito Culex pipiens (LC50 = 15.412 ppm and LC90 = 52.745 ppm) and a potent adulticidal effect to the housefly Musca domestica (LD50 = 21.132 ppm and LD90 = 84.930 ppm). Tested concentrations of ZnO-NPs showed strong activity against the 3rd larval instar. Topical assays revealed dose-dependent adulticidal activity against M. domestica after 24 h of treatment with ZnO-NPs. ZnO-NPs presented a wide antibacterial activity against two fish-pathogen bacteria, Pseudomonas aeruginosa and Aeromonas hydrophila. Histopathological and hematological investigations of the non-target organism, Nile tilapia fish exposed to 75-600 ppm ZnO-NPs provide dose-dependent impacts. Overall, data highlighted the potential applications of surf redfish-mediated ZnO-NPs as an effective and safe way to control mosquitoes, houseflies and fish pathogenic bacteria.


Assuntos
Ciclídeos , Culicidae , Nanopartículas , Pepinos-do-Mar , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Aeromonas hydrophila , Antibacterianos/farmacologia
6.
Bot Stud ; 63(1): 34, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484866

RESUMO

BACKGROUND: Tomato plant (Solanum lycopersicum L.) suffers from numerous fungal pathogens that cause damage to yeild production qualitatively and quantitatively. One of the most destructive disease of tomato is Fusarium wilt that caused by soil borne fungus called F. oxysporum. METHODS: In this study, the anti-Fusarium capabilities of the foliar application of fungal endophytes extracts have been investigated on tomato under Fusarium challenges. Antifungal assay, inhibition of conidial germination, disease severity, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, peroxidase (POD) and polyphenol oxidases (PPO) isozymes were tested for potential resistance of tomato growing under Fusarium infection. RESULTS: Ethyl acetate extracts of A. flavus MZ045563, A. fumigatus MZ045562 and A. nidulans MZ045561 exhibited antifungal activity toward F. oxysporum where inhibition zone diameters were 15, 12 and 20 mm, respectively. Moreover, extracts of all fungal isolates at concentration 7.5 mg/mL reduced conidia germination from 94.4 to 100%. Fusarium infection caused a destructive effects on tomato plant, high severity desiese index 84.37%, reduction in growth parameters, photosynthetic pigments, and soluble protein. However, contents of proline, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2) and antioxidant enzymes activity were increased in tomato plants grown under Fusarium wilt. Treatment of healthy or infected tomato plants by ethyl acetate fungal extracts showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of Fusarium wilt disease on tomato plants have also been reduced by lowering MDA and H2O2 levels. Also, treated tomato plants showed different responses in number and density of POD and PPO isozymes. CONCLUSION: It could be suggested that application of ethyl acetate extracts of tested fungal endophytes especially combination of A. flavus, A. nidulans and A. fumigatus could be commercially used as safe biostimulation of tomato plants as well as biofungicide against tomato Fusarium wilt disease.

7.
Biotechnol Rep (Amst) ; 36: e00770, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36338578

RESUMO

Fungi are potential biocontrol agents and rich sources of secondary metabolites with demonstrated biological activities. This study aimed to isolate and identify fungi from surface-sterilized honeybees (Apis mellifera), as well as to evaluate their biological activities. One fungal isolate was obtained and identified morphologically and genetically as Mucor bainieri MK-Bee-2. Gas chromatography-mass spectroscopy (GC-MS) analysis of fungus crude extract, showed the existence of six major metabolites representing 92.48% of the total peak area. The crude extract of Mucor bainieri MK-Bee-2 was tested for antimicrobial, antioxidant, and antitumor activities. It demonstrated wide antimicrobial activities against human pathogenic Gram-positive and Gram-negative bacterial strains, as well as Candida albicans, with MIC values ranged from 62.5 to 250 µg/ml. The results revealed that the extract exhibited considerable antioxidant activities indicated by strong inhibition of both DPPH and ABTS free radicals. Additionally, the extract exhibited greater potential anticancer activity against both adenocarcinomic human non-small cell lung cancer cells (A549) [IC50 = 6.45 µg/ml], and immortal cell line hepatoma G2 (HepG2) human liver cancer cells [IC50 = 27.48 µg/ml] and higher selectivity in cancer cells than normal cell lines. Furthermore, the extract showed less cytotoxic activity against normal cells with higher IC50 values of 106.99 and 132.57 µg/ml against human lung fibroblast Wistar-38 (Wi-38) and oral epithelial cells (OEC), respectively. Taken together, the Mucor bainieri MK-Bee-2 extract comprises bioactive compounds as promising potential therapeutic candidates for the treatment of lung cancer. Strikingly, the extract sensitizes the lung cancer cells A549  to the ionizing radiation through the pro-apoptotic pathway as indicated by the annexin V flow cytometry analysis which showed that the extract reduced the apoptosis of lung cancer cells.

8.
World J Microbiol Biotechnol ; 38(12): 244, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280608

RESUMO

The prevalence of opportunistic human fungal pathogens is increasing worldwide, and antimicrobial resistance is one of the greatest medical challenges the world faces. Therefore, this study aimed to develop a novel agent to control fungal pathogens. The honeybee products (honey, royal jelly, propolis, bee bread, and bee venom) were screened against unicellular fungal (UCF) pathogens (Cryptococcus neoformans, Kodamaea ohmeri, and Candida albicans) and the bee venom was only exhibited an inhibitory effect against them. The protein contents of crude bee venom were separated using the gel filtration technique into eight fractions which were visualized on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to confirm the presence of five bands with molecular weights of 65, 43, 21, 15, and 3 KDa. Bee venom (BV) of Apis mellifera loaded chitosan nanoparticles were prepared by the ionotropic gelation method. The encapsulation efficiency%, average size, zeta potentials, and surface appearance by Transmission electron microscope (TEM) were evaluated for the prepared nanoparticles. The minimum inhibitory concentration (MIC) of crude BV and BV loaded chitosan nanoparticles (BV-CNPs) was evaluated against the offer mentioned UCF where the MIC values of crude BV were 6.25, 3.12 & 6.25 while MIC values in the case of BV-CNPs were decreased to 3.12, 3.12 & 1.56 mg/ml against C. neoformans, K. ohmeri and C. albicans, respectively. Also, the results showed that BV-CNPs suppressed the biofilm formation as well as yeast to hyphal transition formed by the examined UCF. These results revealed that BV-CNPs are a promising natural compound for fungal pathogens treatment.


Assuntos
Venenos de Abelha , Quitosana , Cryptococcus neoformans , Nanopartículas , Própole , Humanos , Animais , Quitosana/farmacologia , Quitosana/metabolismo , Antifúngicos/farmacologia , Venenos de Abelha/farmacologia , Própole/farmacologia , Dodecilsulfato de Sódio/farmacologia , Nanopartículas/metabolismo , Candida albicans , Cryptococcus neoformans/metabolismo , Biofilmes
9.
Artif Cells Nanomed Biotechnol ; 50(1): 260-274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191138

RESUMO

Due to the misuse of antibiotics, the multidrug-resistant Staphylococcus aureus (MDRSA) has caused serious infections and become more difficult to deal with. Here we propose to synthesise copper oxide nanoparticles (CuO-NPs) using a cell-free filter of Streptomyces rochei to enhance antibiotics activity against (MDRSA) and kill them. Characterisation of CuO-NPs using ultraviolet, dynamic light scattering, zeta potential, transmission electron microscopic (TEM), and X-ray diffraction, were investigated. The antibacterial action of the CuO-NPs was tested against standard strain and clinical isolates using the agar well diffusion method and the microdilution assay. The results showed the monodispersed spherical shape CuO-NPs with a mean diameter of 10.7 nm and were found to be active against (MDRSA). By a combination of CuO-NPs with different antibiotics, the highest synergistic effect was observed with cefoxitin, the minimum inhibitory concentration (MIC) was reduced to 6.5 for CuO-NPs, and 19.5 for cefoxitin. Time-kill assay showed the highest reduction in log10 colony-forming unit (CFU)/ml of initial inoculum of MRSA after 24 h. The HFB-4 cells cultured in the presence of CuO-NPs showed normal morphology with 100% viability at 8 µg/ml. TEM showed that combination (1/4 MIC cefoxitin +1/16 MIC CuO-NPs) highly damages bacterial cells' shape. The biosynthesis CuO-NPs showed antibacterial activity against S. aureus suggesting a promising alternative in clinical.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Ágar/farmacologia , Antibacterianos/farmacologia , Cefoxitina/farmacologia , Cobre/farmacologia , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Staphylococcus aureus
10.
Expert Rev Anti Infect Ther ; 20(10): 1351-1364, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839089

RESUMO

OBJECTIVES: Colistin (polymyxin E) is a bactericidal antibiotic used to treat severe infections caused by multidrug-resistant Gram-negative bacteria. The product of the mcr1 gene generates transferable plasmid-mediated colistin resistance, which has arisen as a worldwide health-care problem. This study aimed to isolate and identify colistin-resistant bacteria, and evaluate the ability of essential oils in its fights. METHODS: Twenty-seven bacterial isolates were collected from patients who were admitted to the National Cancer Institute, Cairo, Egypt, and processed using standard microbiological methods. Essential oils were purchased from AB Chem Company, Egypt, screened for antibacterial, cytotoxic activity, and (GC-MS) analysis. RESULTS: A total of 5 bacterial isolates were resistant to colistin with minimum inhibitory concentration (MIC) ranging from 6.25->200 µg/ml. Cinnamon oil exhibited the highest activity against colistin-resistant strains followed by thyme and eucalyptus oil. The (MIC) of cinnamon oils against resistant strains ranged from 4.88 to 312.5 µg/ml. Moreover, mcr-1 gene expression was extremely down-regulated after the treatment of bacterial strains with cinnamon oil and decreased to 20-35-fold. Examination of treated bacterial cells with sub-inhibitory concentrations under transmission electron microscopy showed various abnormalities occurred in most of these cells. CONCLUSIONS: Cinnamon oil exhibits antibacterial activity against colistin-resistant strains, showing it as a promising natural alternative in clinical therapy.


Assuntos
Colistina , Óleos Voláteis , Antibacterianos/farmacologia , Bactérias , Colistina/farmacologia , Óleo de Eucalipto , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia
11.
Drug Des Devel Ther ; 16: 587-606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281317

RESUMO

Background: Cancer is still a major world health threat, causing a high rate of mortality. VEGFR-2 inhibitor anticancer agents are of great significance. However, they showed some serious side effects. Purpose: To discover new effective and safer anticancer agents, a new series of piperazinylquinoxaline-based derivatives was designed and synthesized on the basis of the pharmacophoric features of VEGFR-2 inhibitor drugs. Methods: The new candidates were evaluated against A549 lung cancer cells, HepG-2 hepatoma cells, Caco-2 colon cancer cells, MDA breast cancer cells, and VEGFR-2 kinase. Moreover, cell cycle kinetics and apoptosis rates were studied in HepG-2 cells treated with compound 11, which was the most promising candidate. Results: The new derivatives revealed better antitumor results (IC50 from 6.48 to 38.58 µM) against the aforementioned cancer cell lines than sorafenib. Also, the new candidates showed VEGFR-2 inhibition with IC50 values ranging from 0.19 to 0.60 µM compared to 0.08 µM for sorafenib. Compound 11, meanwhile, showed IC50 values equal to 10.61, 9.52, 12.45, 11.52, and 0.19 µM against the cancer cell lines and VEGFR-2, respectively. Moreover, compound 11 raised the apoptosis rate in HepG-2 cells from 5% to 44% and caused 4, 2.3, and 3-fold increases in BAX/Bcl-2 ratio, caspase-3 level, and P53 expression, respectively, compared to control untreated cells. Finally, the new derivatives displayed the correct binding mode into VEGFR-2 kinase pocket, giving interactions with the essential residues. Conclusion: This work suggests that compound 11 is a very significant anticancer candidate, and piperazinylquinoxaline is an important scaffold in the development of new potential effective and safer VEGFR-2 inhibitor agents.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Células CACO-2 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
12.
Appl Biochem Biotechnol ; 194(3): 1271-1289, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34661866

RESUMO

Fungal endophytes are living inside plants without any harmful effects; the prospecting about them is increased day by day because they can produce bioactive compounds which can be used in different applications. Herein, the current study was aimed to isolate the endophytic fungi from the Ocimum basilicum plant as safe microorganisms and evaluate their biological activities. The results illustrated that three endophytic fungal strains were isolated and identified morphologically and genetically as Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus flavus and deposited in gene bank under accession numbers MZ045561, MZ045562, and MZ045563 respectively. Moreover, cell-free filtrates of endophytic fungal strains were extracted using ethyl acetate, where these crude extracts exhibited promising antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumonia, and Candida albicans at a concentration of 1000 µg/mL. Furthermore, these endophytic strains exhibited a potential antioxidant activity where IC50 of the crude extract of A. nidulans, A. fumigatus, and A. flavus were (166.3, 68.4, and 347.1 µg/mL) and (151.2, 77.9, and 246.3 µg/mL) using DPPH and ABTS methods, respectively. Furthermore, the ethyl acetate crude extracts of these endophytic fungi did not exhibit any cytotoxic effect against Vero and Wi 38 normal cells. GC-MS analysis of the crude extract of A. nidulans, A. fumigatus, and A. flavus indicated the presence of 22, 22, and 20 active compounds, respectively. The major compounds in the fungal extracts are belonging to fatty acids, fatty acid esters, tetrahydrofurans, and sterols. In conclusion, the isolated endophytic A. nidulans, A. fumigatus, and A. flavus from Ocimum basilicum are promising sources for bioactive compounds.


Assuntos
Antioxidantes
13.
Plants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34579293

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are regarded as one of the most promising kinds of materials in a variety of fields, including agriculture. Therefore, this study aimed to biosynthesize and characterize ZnO-NPs and evaluate their different biological activities. Seven isolates of actinomycetes were obtained and screened for ZnO-NPs synthesis. The isolate MK-104 was chosen and identified as the Streptomyces plicatus MK-104 strain. The biosynthesized ZnO-NPs exhibited an absorbance peak at 350 nm and were spherical in shape with an average size of 21.72 ± 4.27 nm under TEM. XRD and DLS methods confirmed these results. The biosynthesized ZnO-NPs demonstrated activity against plant pathogenic microbes such as Erwinia amylovora, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Fusarium moniliform and Alternaria alternata, with MIC values ranging from 15.6 to 500 µg/mL. Furthermore, ZnO-NPs had a significant effect on Meloidogyne incognita, with death percentages of 88.2, 93.4 and 96.72% after 24, 48 and 72 h of exposure, respectively. Vicia faba seeds were treated with five concentrations of ZnO-NPs (12.5, 25, 50, 100 and 200 µg/mL). Low-moderate ZnO-NP concentrations (12.5-50 µg/mL) were shown to promote seed germination and seedling development, while the mitotic index (MI) decreased as the dosage of ZnO-NPs increased. Micronuclei (MNs) and the chromosomal abnormality index increased as well.

14.
Sci Rep ; 11(1): 4240, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608582

RESUMO

The herbal products proved to be more promising antimicrobials even though their antimicrobial activity is milder than commercially available antibiotics. Moreover, herbal drugs may act synergistically with antibiotics to kill microbes. In this study, we aimed to enhance the activity of penicillin against MRSA through combination with the active saponin fraction isolated from the Zygophyllum album plant. Three different types of metabolites (saponins, sterols, and phenolics) have been extracted from Zygophyllum album with ethanol and purified using different chromatographic techniques. The antibacterial activity of crude extract and the separated metabolites were checked against MRSA isolates, Saponin fraction (ZA-S) was only the active one followed by the crude extract. Therefore, the compounds in this fraction were identified using ultra-high-performance liquid chromatography connected to quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) operated in positive and negative ionization modes. UHPLC/QTOF-MS revealed the presence of major six ursane-type tritepenoidal saponins (Quinovic acid, Quinovic acid 3ß-O-ß-D-quinovopyranoside, Zygophylloside C, Zygophylloside G, Zygophylloside K and Ursolic acid), in addition to Oleanolic acid. Interaction studies between saponin fraction and penicillin against MRSA were performed through the checkerboard method and time-kill assay. According to checkerboard results, only three combinations showed a fractional inhibitory concentration index less than 0.5 at concentrations of (62.5 + 312.5, 62.5 + 156.25, and 62.5 + 78.125 of penicillin and ZA-S, respectively). Time kill assay results showed that the highest reduction in log10 colony-forming unit (CFU)/ml of initial inoculum of MRSA after 24 h occurred by 3.7 at concentrations of 62.5 + 312.5 (µg/µg)/ml of penicillin and ZA-S, respectively. Thus, the combination between saponin fraction of Zygophyllum album and penicillin with these concentrations could be a potential agent against MRSA that can serve as possible model for new antibacterial drug.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cromatografia Líquida de Alta Pressão , Terapia Combinada , Gerenciamento Clínico , Descoberta de Drogas , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Resultado do Tratamento
15.
Int J Biol Macromol ; 163: 1196-1207, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622769

RESUMO

Athelia rolfsii TEMG (MH 236106) an exopolysaccharide (EPS) producing fungal strain was isolated and identified. Extraction, purification, characterization, antimicrobial, antioxidant, antiviral and antitumor activities of the polysaccharide were investigated. It characterized as a homopolysaccharide of glucose with a molecular weight of 345.622 kDa. The identification of the polysaccharide was conducted using scanning electron microscopy, energy dispersive X-ray analysis, 1H and 13C NMR spectra. The existence of ß-1,3 and ß-1,6 linkages suggests that EPS could be scleroglucan. The purified scleroglucan showed considerable antibacterial and antioxidant activities. The results indicated that, there was no cytotoxicity on normal cell (W138) and no effect on tumor cell lines including HepG2 and PC3 showing IC50 of 5096.83, 5885.80 and 4803.90 µg/mL, respectively. The results showed also that Sclg could reduce the cytopathic effect by 50% (EC50) at 15 and 50 µg/mL of herpes simplex virus type-1 (HSV-1) and influenza virus (H5N1), respectively.


Assuntos
Basidiomycota/química , Glucanos/química , Glucanos/farmacologia , Basidiomycota/classificação , Basidiomycota/genética , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Humanos , Estrutura Molecular , Peso Molecular , Monossacarídeos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Reologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...