Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 39(11): 917-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23006058

RESUMO

In the present study, we tested whether polycystic kidney disease (PKD) is associated with renal tissue hypoxia and oxidative stress, which, in turn, contribute to the progression of cystic disease and hypertension. Lewis polycystic kidney (LPK) rats and Lewis control (Lewis) rats were treated with tempol (1 mmol/L in drinking water) from 3 to 13 weeks of age or remained untreated. The LPK rats developed polyuria, uraemia and proteinuria. At 13 weeks of age, LPK rats had greater mean arterial pressure (1.5-fold), kidney weight (sixfold) and plasma creatinine (3.5-fold) than Lewis rats. Kidneys from LPK rats were cystic and fibrotic. Renal hypoxia was evidenced by staining for pimonidazole adducts and hypoxia-inducible factor (HIF)-1α in cells lining renal cysts and upregulation of HIF-1α and its downstream targets vascular endothelial growth factor (VEGF), glucose transporter-1 (Glut-1) and heme oxygenase 1 (HO-1). However, total HO activity did not differ greatly between kidney tissue from LPK compared with Lewis rats. Renal oxidative and/or nitrosative stress was evidenced by ninefold greater immunofluorescence for 3-nitrotyrosine in kidney tissue from LPK compared with Lewis rats and a > 10-fold upregulation of mRNA for p47phox and gp91phox. Total renal superoxide dismutase (SOD) activity was sevenfold less and expression of SOD1 mRNA was 70% less in kidney tissue from LPK compared with Lewis rats. In LPK rats, tempol treatment reduced immunofluorescence for 3-nitrotyrosine and HIF1A mRNA while upregulating VEGF and p47phox mRNA expression, but otherwise had little impact on disease progression, renal tissue hypoxia or hypertension. Our findings do not support the hypothesis that oxidative stress drives hypoxia and disease progression in PKD.


Assuntos
Óxidos N-Cíclicos/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/patologia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/genética , Hipóxia Celular/efeitos dos fármacos , Creatinina/sangue , Progressão da Doença , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/genética , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Ratos , Ratos Endogâmicos Lew , Marcadores de Spin , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Tirosina/análogos & derivados , Tirosina/genética , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...