Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(6): 2415-2424, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38288711

RESUMO

Short-chain fatty acids (SCFAs) comprise the largest group of gut microbial fermentation products. While absorption of most nutrients occurs in the small intestine, indigestible dietary components, such as fiber, reach the colon and are processed by the gut microbiome to produce a wide array of metabolites that influence host physiology. Numerous studies have implicated SCFAs as key modulators of host health, such as in regulating irritable bowel syndrome (IBS). However, robust methods are still required for their detection and quantitation to meet the demands of biological studies probing the complex interplay of the gut-host-health paradigm. In this study, a sensitive, rapid-throughput, and readily expandible UHPLC-QqQ-MS platform using 2-PA derivatization was developed for the quantitation of gut-microbially derived SCFAs, related metabolites, and isotopically labeled homologues. The utility of this platform was then demonstrated by investigating the production of SCFAs in cecal contents from mice feeding studies, human fecal bioreactors, and fecal/bacterial fermentations of isotopically labeled dietary carbohydrates. Overall, the workflow proposed in this study serves as an invaluable tool for the rapidly expanding gut-microbiome and precision nutrition research field.


Assuntos
Microbioma Gastrointestinal , Espectrometria de Massa com Cromatografia Líquida , Humanos , Camundongos , Animais , Cromatografia Líquida , Microbioma Gastrointestinal/fisiologia , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/metabolismo
2.
J Perinatol ; 42(11): 1446-1452, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35840710

RESUMO

OBJECTIVE: Feeding tubes harbor microbial contaminants; studies to date have not explored differences between orogastric (OG) and nasogastric (NG) tube biofilms. We sought to extend a previous analysis by comparing bacterial colonization by location (OG v NG) and by evaluating clinical factors that may affect tube bacterial populations. STUDY DESIGN: The pharyngeal segments of 41 infant feeding tubes (14 OG and 27 NG) from 41 infants were analyzed by next generation 16 S rRNA sequencing on the MiSeq platform. RESULTS: At the phylum level, Proteobacteria had the highest relative abundance of both OG and NG tubes. At the genus/species level, nine taxa differed significantly between OG and NG tubes. Alpha and beta diversity analyses showed significant differences between OG and NG tubes with relatively little contribution from clinical factors. CONCLUSION: The route of feeding tube insertion (oral vs nasal) had a greater impact on bacterial colonization than the assessed clinical factors.


Assuntos
Nutrição Enteral , Unidades de Terapia Intensiva Neonatal , Lactente , Recém-Nascido , Humanos , Intubação Gastrointestinal , Bactérias/genética , Nariz
3.
Am J Respir Crit Care Med ; 205(6): 641-650, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919021

RESUMO

Rationale: In murine models, microbial exposures induce protection from experimental allergic asthma through innate immunity. Objectives: Our aim was to assess the association of early life innate immunity with the development of asthma in children at risk. Methods: In the PASTURE farm birth cohort, innate T-helper cell type 2 (Th2), Th1, and Th17 cytokine expression at age 1 year was measured after stimulation of peripheral blood mononuclear cells with LPS in n = 445 children. Children at risk of asthma were defined based on single-nucleotide polymorphisms at the 17q21 asthma gene locus. Specifically, we used the SNP rs7216389 in the GSDMB gene. Wheeze in the first year of life was assessed by weekly diaries and asthma by questionnaire at age 6 years. Measurements and Main Results: Not all cytokines were detectable in all children after LPS stimulation. When classifying detectability of cytokines by latent class analysis, carrying the 17q21 risk allele rs7216389 was associated with risk of wheeze only in the class with the lowest level of LPS-induced activation: odds ratio (OR), 1.89; 95% confidence interval [CI], 1.13-3.16; P = 0.015. In contrast, in children with high cytokine activation after LPS stimulation, no association of the 17q21 risk allele with wheeze (OR, 0.63; 95% CI, 0.29-1.40; P = 0.258, P = 0.034 for interaction) or school-age asthma was observed. In these children, consumption of unprocessed cow's milk was associated with higher cytokine activation (OR, 3.37; 95% CI, 1.56-7.30; P = 0.002), which was in part mediated by the gut microbiome. Conclusions: These findings suggest that within the 17q21 genotype, asthma risk can be mitigated by activated immune responses after innate stimulation, which is partly mediated by a gut-immune axis.


Assuntos
Asma , Cromossomos Humanos Par 17 , Lipopolissacarídeos , Alelos , Animais , Asma/genética , Bovinos , Citocinas/genética , Feminino , Humanos , Imunidade Inata , Leucócitos Mononucleares , Camundongos , Sons Respiratórios/genética
4.
Nutrients ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959944

RESUMO

Streptococcus salivarius (S. salivarius) K12 supplementation has been found to reduce the risk of recurrent upper respiratory tract infections. Yet, studies have not reported the effect of supplementation on oral S. salivarius K12 levels or the salivary microbiome. This clinical trial was designed to determine how supplementation with S. salivarius K12 influences the oral microbiome. In a randomized, double-blind, placebo-controlled trial, 13 healthy adults received a probiotic powder (PRO) containing Lactobacillus acidophilus, Bifidobacterium lactis, and S. salivarius K12 and 12 healthy adults received a placebo-control powder (CON) (n = 12) for 14 consecutive days. Oral S. salivarius K12 and total bacteria were quantified by qPCR and the overall oral microbiome was measured using 16S rRNA amplicon sequencing. Supplementation significantly increased mean salivary S. salivarius K12 levels by 5 logs compared to baseline for the PRO group (p < 0.0005), which returned to baseline 2 weeks post-supplementation. Compared with the CON group, salivary S. salivarius K12 was 5 logs higher in the PRO group at the end of the supplementation period (p < 0.001). Neither time nor supplementation influenced the overall oral microbiome. Supplementation with a probiotic cocktail containing S. salivarius K12 for two weeks significantly increased levels of salivary S. salivarius K12.


Assuntos
Suplementos Nutricionais , Voluntários Saudáveis , Probióticos/administração & dosagem , Probióticos/farmacologia , Saliva/microbiologia , Streptococcus salivarius , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Recidiva , Infecções Respiratórias/prevenção & controle
5.
Nat Med ; 26(11): 1766-1775, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139948

RESUMO

Growing up on a farm is associated with an asthma-protective effect, but the mechanisms underlying this effect are largely unknown. In the Protection against Allergy: Study in Rural Environments (PASTURE) birth cohort, we modeled maturation using 16S rRNA sequence data of the human gut microbiome in infants from 2 to 12 months of age. The estimated microbiome age (EMA) in 12-month-old infants was associated with previous farm exposure (ß = 0.27 (0.12-0.43), P = 0.001, n = 618) and reduced risk of asthma at school age (odds ratio (OR) = 0.72 (0.56-0.93), P = 0.011). EMA mediated the protective farm effect by 19%. In a nested case-control sample (n = 138), we found inverse associations of asthma with the measured level of fecal butyrate (OR = 0.28 (0.09-0.91), P = 0.034), bacterial taxa that predict butyrate production (OR = 0.38 (0.17-0.84), P = 0.017) and the relative abundance of the gene encoding butyryl-coenzyme A (CoA):acetate-CoA-transferase, a major enzyme in butyrate metabolism (OR = 0.43 (0.19-0.97), P = 0.042). The gut microbiome may contribute to asthma protection through metabolites, supporting the concept of a gut-lung axis in humans.


Assuntos
Asma/epidemiologia , Butiratos/metabolismo , Coenzima A-Transferases/genética , Microbioma Gastrointestinal/genética , Adolescente , Asma/genética , Asma/microbiologia , Asma/patologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Butiratos/isolamento & purificação , Criança , Fezes/química , Feminino , Humanos , Lactente , Pulmão/metabolismo , Pulmão/patologia , Masculino , RNA Ribossômico 16S/genética
6.
Sci Rep ; 10(1): 14686, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895402

RESUMO

Long-term consumption of a diet with excessive fat and sucrose (Western diet, WD) leads to an elevated risk of obesity and metabolic syndrome in both males and females. However, there are sexual dimorphisms in metabolism which are apparent when considering the prevalence of complications of metabolic syndrome, such as non-alcoholic fatty liver disease. This study aimed to elucidate the impact of a WD on the metabolome and the gut microbiota of male and female mice at 5, 10, and 15 months to capture the dynamic and comprehensive changes brought about by diet at different stages of life. Here we show that there are important considerations of age and sex that should be considered when assessing the impact of diet on the gut microbiome and health.


Assuntos
Dieta Ocidental , Microbioma Gastrointestinal , Metaboloma , Animais , Dieta Ocidental/efeitos adversos , Feminino , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fatores Sexuais
7.
Pediatr Res ; 87(3): 472-479, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31537010

RESUMO

BACKGROUND: Postnatal growth restriction (PNGR) in premature infants increases risk of pulmonary hypertension (PH). In a rodent model, PNGR causes PH, while combining PNGR and hyperoxia increases PH severity. We hypothesized that PNGR causes intestinal dysbiosis and that treatment with a probiotic attenuates PNGR-associated PH. METHOD: Pups were randomized at birth to room air or 75% oxygen (hyperoxia), to normal milk intake (10 pups/dam) or PNGR (17 pups/dam), and to probiotic Lactobacillus reuteri DSM 17938 or phosphate-buffered saline. After 14 days, PH was assessed by echocardiography and right ventricular hypertrophy (RVH) was assessed by Fulton's index (right ventricular weight/left ventricle + septal weight). The small bowel and cecum were analyzed by high-throughput 16S ribosomal RNA gene sequencing. RESULTS: PNGR with or without hyperoxia (but not hyperoxia alone) altered the microbiota of the distal small bowel and cecum. Treatment with DSM 17938 attenuated PH and RVH in pups with PNGR, but not hyperoxia alone. DSM 17938 treatment decreased α-diversity. The intestinal microbiota differed based on oxygen exposure, litter size, and probiotic treatment. CONCLUSION: PNGR causes intestinal dysbiosis and PH. Treatment with DSM 17938 prevents PNGR-associated RVH and PH. Changes in the developing intestine and intestinal microbiota impact the developing lung vasculature and RV.


Assuntos
Restrição Calórica/efeitos adversos , Ceco/microbiologia , Microbioma Gastrointestinal , Hipertensão Pulmonar/prevenção & controle , Intestino Delgado/microbiologia , Limosilactobacillus reuteri/fisiologia , Pulmão/irrigação sanguínea , Probióticos/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Disbiose , Feminino , Hiperóxia/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/microbiologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/microbiologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Tamanho da Ninhada de Vivíparos , Estado Nutricional , Gravidez , Ratos Sprague-Dawley
8.
J Nutr ; 149(6): 1075-1088, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31006815

RESUMO

BACKGROUND: Infancy is a crucial period for establishing the intestinal microbiome. This process may be influenced by vitamin A (VA) status because VA affects intestinal immunity and epithelial integrity, factors that can, in turn, modulate microbiome development. OBJECTIVES: The aim of this study was to determine if neonatal VA supplementation (VAS) affected the abundance of Bifidobacterium, a beneficial commensal, or of Proteobacteria, a phylum containing enteric pathogens, in early (6-15 wk) or late (2 y) infancy. Secondary objectives were to determine if VAS affected the abundance of other bacterial taxa, and to determine if VA status assessed by measuring plasma retinol was associated with bacterial abundance. METHODS: Three hundred and six Bangladeshi infants were randomized by sex and birthweight status (above/below median) to receive 1 VA dose (50,000 IU) or placebo within 48 h of birth. Relative abundance at the genus level and above was assessed by 16S rRNA gene sequencing. A terminal restriction fragment-length polymorphism assay was used to identify Bifidobacterium species and subspecies at 6 wk. RESULTS: Linear regression showed that Bifidobacterium abundance in early infancy was lower in boys (median, 1st/3rd quartiles; 0.67, 0.52/0.78) than girls (0.73, 0.60/0.80; P = 0.003) but that boys receiving VAS (0.69, 0.55/0.78) had higher abundance than boys receiving placebo (0.65, 0.44/0.77; P = 0.039). However this difference was not seen in girls (VAS 0.71, 0.54/0.80; placebo 0.75, 0.63/0.81; P = 0.25). VAS did not affect Proteobacteria abundance. Sex-specific associations were also seen for VA status, including positive associations of plasma retinol with Actinobacteria (the phylum containing Bifidobacterium) and Akkermansia, another commensal with possible health benefits, for girls in late infancy. CONCLUSIONS: Better VA status in infancy may influence health both in infancy and later in life by promoting the establishment of a healthy microbiota. This postulated effect of VA may differ between boys and girls. This trial was registered at clinicaltrials.gov as NCT02027610.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Vitamina A/administração & dosagem , Bangladesh , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Pré-Escolar , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Estado Nutricional , Proteobactérias/efeitos dos fármacos , Proteobactérias/isolamento & purificação , Vitamina A/sangue
9.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30915455

RESUMO

Enteral feeding is a key component of care in neonatal intensive care units (NICUs); however, feeding tubes harbor microbes. These microbes have the potential to cause disease, yet their source remains controversial and clinical recommendations to reduce feeding tube colonization are lacking. This study aims to improve our understanding of the bacteria in neonatal feeding tubes and to evaluate factors that may affect these bacteria. 16S rRNA gene sequencing was used to characterize the bacteria present in pharyngeal, esophageal, and gastric portions of feeding tubes, residual fluid of the tubes, and infant stool using samples from 47 infants. Similar distributions of taxa were observed in all samples, although beta diversity differed by sample type. Feeding tube samples had lower alpha diversity than stool samples, and alpha diversity increased with gestational age, day of life, and tube dwell time. In a subset of samples from 6 infants analyzed by whole metagenome sequencing, there was greater overlap in transferable antimicrobial resistance genes between tube and fecal samples in breast milk fed infants than in formula fed infants. These findings develop our understanding of neonatal feeding tube colonization, laying a foundation for research into methods for minimizing NICU patients' exposure to antimicrobial resistant microbes.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana/genética , Nutrição Enteral/instrumentação , Bactérias/classificação , Fezes/microbiologia , Genoma Bacteriano/genética , Humanos , Fórmulas Infantis , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Microbiota/genética , Leite Humano , RNA Ribossômico 16S/genética
10.
Pediatrics ; 143(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30674610

RESUMO

BACKGROUND: The intestinal microbiome in early infancy affects immunologic development and thus may affect vaccine memory, though few prospective studies have examined such associations. We examined the association of Bifidobacterium levels in early infancy with memory responses to early vaccination measured at 2 years of age. METHODS: In this prospective observational study, we examined the association of Bifidobacterium abundance in the stool of healthy infants at 6 to 15 weeks of age, near the time of vaccination, with T-cell and antibody responses measured at 6 weeks, 15 weeks, and 2 years of age. Infants were vaccinated with Bacillus Calmette-Guérin (BCG) (at birth), oral polio virus (at birth and at 6, 10, and 14 weeks), tetanus toxoid (TT) (at 6, 10, and 14 weeks), and hepatitis B virus (at 6, 10, and 14 weeks). Fecal Bifidobacterium was measured at 6, 11, and 15 weeks. Bifidobacterium species and subspecies were measured at 6 weeks. RESULTS: Mean Bifidobacterium abundance in early infancy was positively associated with the CD4 T-cell responses to BCG, TT, and hepatitis B virus at 15 weeks, with CD4 responses to BCG and TT at 2 years, and with plasma TT-specific immunoglobulin G and stool polio-specific immunoglobulin A at 2 years. Similar associations were seen for the predominant subspecies, Bifidobacterium longum subspecies infantis. CONCLUSIONS: Bifidobacterium abundance in early infancy may increase protective efficacy of vaccines by enhancing immunologic memory. This hypothesis could be tested in clinical trials of interventions to optimize Bifidobacterium abundance in appropriate populations.


Assuntos
Vacina BCG/administração & dosagem , Infecções por Bifidobacteriales/diagnóstico , Infecções por Bifidobacteriales/prevenção & controle , Bifidobacterium/efeitos dos fármacos , Vacinação/métodos , Infecções por Bifidobacteriales/epidemiologia , Bifidobacterium/fisiologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Resultado do Tratamento , Vacinação/tendências
11.
PLoS One ; 13(10): e0204967, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273395

RESUMO

Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and mortality in premature infants. Human and animal studies suggest a role for Paneth cells in NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithelial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-microbial axis remains incomplete. Paneth cell function was depleted in the immature murine intestine using chemical and genetic models, which resulted in intestinal injury consistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy, flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the microbiome. Deficient Paneth cell function induced significant compositional changes in the cecal microbiome with a significant increase in Enterobacteriacae species. Further, the bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in human NEC. This further strengthens our understanding of the importance of Paneth cells to intestinal homeostasis in the immature intestine.


Assuntos
Enterocolite Necrosante/patologia , Microbioma Gastrointestinal , Celulas de Paneth/metabolismo , Animais , Animais Recém-Nascidos , Autofagossomos/metabolismo , Autofagossomos/patologia , Ceco/microbiologia , Citocinas/sangue , Toxina Diftérica/toxicidade , Modelos Animais de Doenças , Ditizona/toxicidade , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/isolamento & purificação , Enterocolite Necrosante/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/patologia
12.
Chemosphere ; 203: 467-473, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29635158

RESUMO

Triclosan is frequently used for its antimicrobial properties and has been detected in human serum, urine, and breast milk. Animal and molecular studies have shown that triclosan exerts a wide range of adverse health effects at both high (ppm) and low (ppb) concentrations. Since triclosan is of growing concern to human and environmental health, there is a need to improve extraction procedures and to study additional effects from triclosan exposure. In this study, we have improved triclosan extraction from breast milk by using salt (MgSO4) to reduce emulsion formation and increase water polarity and water (∼80%) to enhance the overall extraction efficiency (∼3.5 fold). This extraction method was applied to breast milk samples collected from donors who i) recorded their use of triclosan-containing personal care products and ii) provided matching infant stool samples. Of the participants who had detectable amounts of triclosan in their breast milk, nine (75%) of them reported daily use of triclosan-containing personal care products. Levels of triclosan in breast milk were compared to the donor's infant's fecal microbiome. We found that the bacterial diversity in the fecal microbiome of the infants exposed to breast milk with detectable triclosan levels differed compared to their peers exposed to milk containing non-detectable amounts. This finding implies that exogenous chemicals are impacting microbiome diversity.


Assuntos
Anti-Infecciosos Locais/farmacologia , Bactérias/efeitos dos fármacos , Fezes/microbiologia , Microbiota/efeitos dos fármacos , Leite Humano/química , Triclosan/farmacologia , Anti-Infecciosos Locais/análise , Feminino , Humanos , Lactente , Triclosan/análise
13.
Redox Biol ; 14: 588-599, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29154190

RESUMO

Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD) is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (-)-epicatechin (EC) supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ) were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2-20mg/kg body weight) mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα)-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption.


Assuntos
Catequina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Resistência à Insulina , Substâncias Protetoras/uso terapêutico , Animais , Células CACO-2 , Fígado Gorduroso/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos
14.
J Pediatr Gastroenterol Nutr ; 65(4): 449-455, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28945208

RESUMO

OBJECTIVE: The aim of this study was to measure consumption and absorption of human milk oligosaccharides (HMOs) in a cohort of premature infants treated with probiotic Bifidobacterium breve. METHODS: Twenty-nine premature infants (median gestational age 28 weeks, range 23-32 weeks) cared for in the neonatal intensive care unit of the King Edward and Princess Margaret Hospital in Perth, Australia, were treated with B breve at a dose of 1.66 billion organisms per day. Samples of feces, urine, and milk were obtained at initiation of the probiotic and again 3 weeks later. 16S ribosomal RNA from the feces was analyzed by next-generation sequencing. Quantitation of HMO content of the milk, urine, and feces was performed using nano-high-performance liquid chromatography-chip/time-of-flight mass spectrometry. RESULTS: There was heterogeneity in colonization with bifidobacteria. "Responders" received milk with higher percentages of fucosylated HMOs and had higher percentages of bifidobacteria and lower percentages of Enterobacteriaceae in their feces than "nonresponders." Several individual HMOs in the milk were associated with changes in fecal bifidobacteria over time. Changes over time in milk, fecal, and urine HMOs suggested heterogeneity among HMO structures in consumption by microbes in the gut lumen and absorption from the intestine. CONCLUSIONS: Colonization of the premature infant intestinal tract with probiotic B breve is influenced by prebiotic HMOs. B breve is a selective consumer of HMOs in the premature infant.


Assuntos
Bifidobacterium breve , Digestão/fisiologia , Microbioma Gastrointestinal/fisiologia , Leite Humano/química , Oligossacarídeos/química , Probióticos/uso terapêutico , Austrália , Cromatografia Líquida de Alta Pressão , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Espectrometria de Massas , Leite Humano/fisiologia , Oligossacarídeos/fisiologia
15.
J Pathol ; 243(4): 431-441, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28892150

RESUMO

Dysregulated bile acid (BA) synthesis or reduced farnesoid X receptor (FXR) levels are found in patients having metabolic diseases, autoimmune hepatitis, and liver cirrhosis or cancer. The objective of this study was to establish the relationship between butyrate and dysregulated BA synthesis-induced hepatitis as well as the effect of butyrate in reversing the liver pathology. Wild-type (WT) and FXR knockout (KO) male mice were placed on a control (CD) or western diet (WD) for 15 months. In the presence or absence of butyrate supplementation, feces obtained from 15-month-old WD-fed FXR KO mice, which had severe hepatitis and liver tumors, were transplanted to 7-month-old WD-fed FXR KO for 3 months. Hepatic phenotypes, microbiota profile, and BA composition were analyzed. Butyrate-generating bacteria and colonic butyrate concentration were reduced due to FXR inactivation and further reduced by WD intake. In addition, WD-fed FXR KO male mice had the highest concentration of hepatic ß-muricholic acid (ß-MCA) and bacteria-generated deoxycholic acid (DCA) accompanied by serious hepatitis. Moreover, dysregulated BA and reduced SCFA signaling co-existed in both human liver cancers and WD-fed FXR KO mice. Microbiota transplantation using butyrate-deficient feces derived from 15-month-old WD-fed FXR KO mice increased hepatic lymphocyte numbers as well as hepatic ß-MCA and DCA concentrations. Furthermore, butyrate supplementation reduced hepatic ß-MCA as well as DCA and eliminated hepatic lymphocyte infiltration. In conclusion, reduced butyrate contributes to the development of hepatitis in the FXR KO mouse model. In addition, butyrate reverses dysregulated BA synthesis and its associated hepatitis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Ácidos e Sais Biliares/metabolismo , Butiratos/farmacologia , Hepatite/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Bactérias/metabolismo , Butiratos/metabolismo , Colo/microbiologia , Dieta Ocidental , Modelos Animais de Doenças , Disbiose , Ácidos Graxos/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Predisposição Genética para Doença , Hepatite/metabolismo , Hepatite/microbiologia , Hepatite/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Fenótipo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
16.
Am J Pathol ; 187(8): 1800-1813, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28711154

RESUMO

Patients who have liver cirrhosis and liver cancer also have reduced farnesoid X receptor (FXR). The current study analyzes the effect of diet through microbiota that affect hepatic inflammation in FXR knockout (KO) mice. Wild-type and FXR KO mice were on a control (CD) or Western diet (WD) for 10 months. In addition, both CD- and WD-fed FXR KO male mice, which had hepatic lymphocyte and neutrophil infiltration, were treated by vancomycin, polymyxin B, and Abx (ampicillin, neomycin, metronidazole, and vancomycin). Mice were subjected to morphological analysis as well as gut microbiota and bile acid profiling. Male WD-fed FXR KO mice had the most severe steatohepatitis. FXR KO also had reduced Firmicutes and increased Proteobacteria, which could be reversed by Abx. In addition, Abx eliminated hepatic neutrophils and lymphocytes in CD-fed, but not WD-fed, FXR KO mice. Proteobacteria and Bacteroidetes persisted in WD-fed FXR KO mice even after Abx treatment. Only polymyxin B could reduce hepatic lymphocytes in WD-fed FXR KO mice. The reduced hepatic inflammation by antibiotics was accompanied by decreased free and conjugated secondary bile acids as well as changes in gut microbiota. Our data revealed that Lactococcus, Lactobacillus, and Coprococcus protect the liver from inflammation.


Assuntos
Dieta Ocidental/efeitos adversos , Disbiose/patologia , Fígado Gorduroso/patologia , Inflamação/patologia , Fígado/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Antibacterianos/farmacologia , Disbiose/etiologia , Disbiose/metabolismo , Disbiose/microbiologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Inflamação/metabolismo , Inflamação/microbiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/microbiologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Microbiota , Infiltração de Neutrófilos , Receptores Citoplasmáticos e Nucleares/genética
17.
J Nutr Sci ; 6: e6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620481

RESUMO

Mechanistic research suggests a unique evolutionary relationship between complex milk oligosaccharides and cognate bifidobacteria enriched in breast-fed infants. Bovine milk oligosaccharides (BMO) were recently identified as structurally and functionally similar to human milk oligosaccharides. The present single-blind three-way crossover study is the first to determine the safety and tolerability of BMO consumption by healthy human participants (n 12) and its effects on faecal microbiota and microbial metabolism. Participants consumed each supplement (placebo-control; low- and high-BMO doses) for eleven consecutive days, followed by a 2-week washout period prior to initiating the next supplement arm. Low and high BMO doses were consumed as 25 and 35 % of each individual's daily fibre intake, respectively. Safety and tolerability were measured using standardised questionnaires on gut and stomach discomfort and stool consistency. Faecal extracts were profiled for bacterial populations by next-generation sequencing (NGS) and bifidobacteria presence was confirmed using quantitative PCR. Urine was analysed for changes in microbial metabolism using nuclear magnetic resonance spectroscopy (1H-NMR). Consumption of both the low and high BMO doses was well tolerated and did not change stool consistency from baseline. Multivariate analysis of the NGS results demonstrated no change in faecal microbiota phyla among the placebo-control and BMO supplement groups. In conclusion, BMO supplementation was well tolerated in healthy adults and has the potential to shift faecal microbiota toward beneficial strains as part of a synbiotic treatment with probiotic cultures that selectively metabolise oligosaccharides.

18.
Sci Rep ; 7(1): 1748, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496104

RESUMO

This study aims to uncover how specific bacteria and bile acids (BAs) contribute to steatosis induced by diet and farnesoid X receptor (FXR) deficiency in both genders. A control diet (CD) and Western diet (WD), which contains high fat and carbohydrate, were used to feed wild type (WT) and FXR knockout (KO) mice followed by phenotyping characterization as well as BA and microbiota profiling. Our data revealed that male WD-fed FXR KO mice had the most severe steatosis and highest hepatic and serum lipids as well as insulin resistance among the eight studied groups. Gender differences in WD-induced steatosis, insulin sensitivity, and predicted microbiota functions were all FXR-dependent. FXR deficiency enriched Desulfovibrionaceae, Deferribacteraceae, and Helicobacteraceae, which were accompanied by increased hepatic taurine-conjugated cholic acid and ß-muricholic acid as well as hepatic and serum lipids. Additionally, distinct microbiota profiles were found in WD-fed WT mice harboring simple steatosis and CD-fed FXR KO mice, in which the steatosis had a potential to develop into liver cancer. Together, the presented data revealed FXR-dependent concomitant relationships between gut microbiota, BAs, and metabolic diseases in both genders. Gender differences in BAs and microbiota may account for gender dissimilarity in metabolism and metabolic diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Dieta Ocidental , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Microbiota , Receptores Citoplasmáticos e Nucleares/metabolismo , Caracteres Sexuais , Animais , Disbiose/patologia , Fígado Gorduroso/genética , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Homeostase/genética , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/genética , Fenótipo , Receptores Citoplasmáticos e Nucleares/deficiência , Estatísticas não Paramétricas
19.
J Dairy Sci ; 100(4): 2471-2481, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131576

RESUMO

Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health.


Assuntos
Disbiose , Leite/metabolismo , Animais , Bovinos , Dieta , Inflamação , Camundongos , Camundongos Obesos , Oligossacarídeos/metabolismo , Permeabilidade
20.
Food Chem ; 197(Pt A): 273-84, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616950

RESUMO

SCOPE: The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. METHODS AND RESULTS: Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. CONCLUSION: The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases.


Assuntos
Produtos Fermentados do Leite/microbiologia , Proteínas do Leite/química , Proteólise/efeitos dos fármacos , Animais , Bovinos , Produtos Fermentados do Leite/química , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , Lactobacillus/genética , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...