Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37052767

RESUMO

BACKGROUND: The colonization of skin with pathogenic, partially antibiotic-resistant bacteria is frequently a severe problem in dermatological therapies. For instance, skin colonization with Staphylococcus aureus is even a disease-promoting factor in atopic dermatitis. The photodynamic inactivation (PDI) of bacteria could be a new antibacterial procedure. Upon irradiation with visible light, a special photosensitizer exclusively generates singlet oxygen. This reactive oxygen species kills bacteria via oxidation independent of species or strain and their antibiotic resistance profile causing no bacterial resistance on its part. OBJECTIVE: To investigate the antibacterial potential of a photosensitizer, formulated in a new hydrogel, on human skin ex vivo. METHODS: The photochemical stability of the photosensitizer and its ability to generate singlet oxygen in the hydrogel was studied. Antimicrobial efficacy of this hydrogel was tested step by step, firstly on inanimate surfaces and then on human skin ex vivo against S. aureus and Pseudomonas aeruginosa using standard colony counting. NBTC staining and TUNEL assays were performed on skin biopsies to investigate potential necrosis and apoptosis effects in skin cells possibly caused by PDI. RESULTS: None of the hydrogel components affected the photochemical stability and the life time of singlet oxygen. On inanimate surfaces as well as on the human skin, the number of viable bacteria was reduced by up to 4.8 log10 being more effective than most other antibacterial topical agents. Histology and assays showed that PDI against bacteria on the skin surface caused no harmful effects on the underlying skin cells. CONCLUSION: Photodynamic inactivation hydrogel proved to be effective for decolonization of human skin including the potential to act against superficial skin infections. Being a water-based formulation, the hydrogel should be also suitable for the mucosa. The results of the present ex vivo study form a good basis for conducting clinical studies in vivo.

2.
Food Microbiol ; 110: 104174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462830

RESUMO

The photodynamic inactivation (PDI) uses molecules (photosensitizers) that absorb visible light (385-450 nm) energy, transfer it to adjacent molecular oxygen and thereby generating the biocidal singlet oxygen and other reactive oxygen species in situ. Efficacy of PDI was tested against Listeria monocytogenes and Salmonella enterica in three ways. Firstly, by adding the photosensitizer to bacterial suspensions. Secondly, bacteria were placed on inanimate surfaces and then sprayed with a photosensitizer suspension. Thirdly, bacteria were placed on coated inanimate surfaces, where the photosensitizer was permanently fixed in this coating (antimicrobial coating, AMC). Experiments were performed without and with soiling (albumin, sheep erythrocytes). In suspension, PDI reduced the number of viable Listeria monocytogenes and Salmonella enterica by more than 6 Log CFU/mL within seconds of light exposure. Photosensitizer spray suspension reduced the bacterial burden on surfaces with up to about 6 Log CFU/mL (5 s light exposure). PDI, even in the presence of high soiling, achieved a reduction of up to 5.1 ± 1.2 Log CFU/mL. The AMC showed a bacterial reduction that decreased from 5.1 to 0.7 Log CFU/mL with increasing soiling. Depending on the soiling and the respective bacteria, the spray suspension or AMC achieved a bacterial reduction on the running conveyor belt demonstrator ranging from 2.9 to 5.3 or 0.5 to 4.5 Log CFU/mL, respectively. PDI used visible light, phenalene-1-one and curcumin photosensitizers, and oxygen from ambient air to reduce the bioburden on typical surfaces in food processing. The AMC acts slower than the spray suspension but enables a permanent, self-sanitizing effect.


Assuntos
Listeria monocytogenes , Salmonella enterica , Animais , Ovinos , Aço Inoxidável , Poliuretanos , Fármacos Fotossensibilizantes/farmacologia , Oxigênio
3.
Artigo em Inglês | MEDLINE | ID: mdl-35206511

RESUMO

Millions of people use public transportation daily worldwide and frequently touch surfaces, thereby producing a reservoir of microorganisms on surfaces increasing the risk of transmission. Constant occupation makes sufficient cleaning difficult to achieve. Thus, an autonomous, permanent, antimicrobial coating (AMC) could keep down the microbial burden on such surfaces. A photodynamic AMC was applied to frequently touched surfaces in buses. The microbial burden (colony forming units, cfu) was determined weekly and compared to equivalent surfaces in buses without AMC (references). The microbial burden ranged from 0-209 cfu/cm2 on references and from 0-54 cfu/cm2 on AMC. The means were 13.4 ± 29.6 cfu/cm2 on references and 4.5 ± 8.4 cfu/cm2 on AMC (p < 0.001). The difference in microbial burden on AMC and references was almost constant throughout the study. Considering a hygiene benchmark of 5 cfu/cm2, the data yield an absolute risk reduction of 22.6% and a relative risk reduction of 50.7%. In conclusion, photodynamic AMC kept down the microbial burden, reducing the risk of transmission of microorganisms. AMC permanently and autonomously contributes to hygienic conditions on surfaces in public transportation. Photodynamic AMC therefore are suitable for reducing the microbial load and closing hygiene gaps in public transportation.


Assuntos
Anti-Infecciosos , Antibacterianos , Contagem de Colônia Microbiana , Humanos , Veículos Automotores , Meios de Transporte
4.
Bioresour Technol ; 345: 126524, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896529

RESUMO

The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT-system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop®.


Assuntos
Reatores Biológicos , Euryarchaeota , Hidrogênio , Metano , Methanobacteriaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA