Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 32(17): 3633-3650, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34905772

RESUMO

The prefrontal cortex (PFC) is characterized by protracted maturation. The cellular mechanisms controlling the early development of prefrontal circuits are still largely unknown. Our study delineates the developmental cellular processes in the mouse medial PFC (mPFC) during the second and the third postnatal weeks and characterizes their contribution to the changes in network activity. We show that spontaneous inhibitory postsynaptic currents (sIPSC) are increased, whereas spontaneous excitatory postsynaptic currents (sEPSC) are reduced from the second to the third postnatal week. Drug application suggested that the increased sEPSC frequency in mPFC at postnatal day 10 (P10) is due to depolarizing γ-aminobutyric acid (GABA) type A receptor function. To further validate this, perforated patch-clamp recordings were obtained and the expression levels of K-Cl cotransporter 2 (KCC2) protein were examined. The reversal potential of IPSCs in response to current stimulation was significantly more depolarized at P10 than P20 while KCC2 expression is decreased. Moreover, the number of parvalbumin-expressing GABAergic interneurons increases and their intrinsic electrophysiological properties significantly mature in the mPFC from P10 to P20. Using computational modeling, we show that the developmental changes in synaptic and intrinsic properties of mPFC neurons contribute to the enhanced network activity in the juvenile compared with neonatal mPFC.


Assuntos
Simportadores , Ácido gama-Aminobutírico , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Simportadores/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Front Neural Circuits ; 12: 96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429776

RESUMO

GABAergic (γ-aminobutyric acid) neurons are inhibitory neurons and protect neural tissue from excessive excitation. Cortical GABAergic neurons play a pivotal role for the generation of synchronized cortical network oscillations. Imbalance between excitatory and inhibitory mechanisms underlies many neuropsychiatric disorders and is correlated with abnormalities in oscillatory activity, especially in the gamma frequency range (30-80 Hz). We investigated the functional changes in cortical network activity in response to developmentally reduced inhibition in the adult mouse barrel cortex (BC). We used a mouse model that displays ∼50% fewer cortical interneurons due to the loss of Rac1 protein from Nkx2.1/Cre-expressing cells [Rac1 conditional knockout (cKO) mice], to examine how this developmental loss of cortical interneurons may affect basal synaptic transmission, synaptic plasticity, spontaneous activity, and neuronal oscillations in the adult BC. The decrease in the number of interneurons increased basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks in the Rac1 cKO mouse cortex, decreased long-term potentiation (LTP) in response to tetanic stimulation but did not alter the pair-pulse ratio (PPR). Furthermore, under spontaneous recording conditions, Rac1 cKO brain slices exhibit enhanced sensitivity and susceptibility to emergent spontaneous activity. We also find that this developmental decrease in the number of cortical interneurons results in local neuronal networks with alterations in neuronal oscillations, exhibiting decreased power in low frequencies (delta, theta, alpha) and gamma frequency range (30-80 Hz) with an extra aberrant peak in high gamma frequency range (80-150 Hz). Therefore, our data show that disruption in GABAergic inhibition alters synaptic properties and plasticity, while it additionally disrupts the cortical neuronal synchronization in the adult BC.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Animais , Contagem de Células/tendências , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia
3.
Glia ; 66(3): 576-591, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29165835

RESUMO

The oligodendrocyte maturation process and the transition from the pre-myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG-1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin-gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin-regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de- and remyelination. However during remyelination, a novel, CNTN2-independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.


Assuntos
Contactina 2/metabolismo , Doenças Desmielinizantes/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Canais de Cálcio/metabolismo , Células Cultivadas , Contactina 2/genética , Cuprizona , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condução Nervosa/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Oligodendroglia/patologia , Técnicas de Cultura de Tecidos
4.
J Neurophysiol ; 119(3): 822-833, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167323

RESUMO

Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABAA receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced synaptic plasticity in the upper layers of the prefrontal cortex as a cellular correlate of this weakened cognitive function. This decreased synaptic plasticity is due to reduced N-methyl-d-aspartate receptor expression but not due to dampened intrinsic excitability or enhanced GABAergic signaling during adolescence.


Assuntos
Cognição/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Comportamento Animal , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento
5.
Cereb Cortex ; 25(9): 2370-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24626607

RESUMO

Cortical interneurons are characterized by extraordinary functional and morphological diversity. Although tremendous progress has been made in uncovering molecular and cellular mechanisms implicated in interneuron generation and function, several questions still remain open. Rho-GTPases have been implicated as intracellular mediators of numerous developmental processes such as cytoskeleton organization, vesicle trafficking, transcription, cell cycle progression, and apoptosis. Specifically in cortical interneurons, we have recently shown a cell-autonomous and stage-specific requirement for Rac1 activity within proliferating interneuron precursors. Conditional ablation of Rac1 in the medial ganglionic eminence leads to a 50% reduction of GABAergic interneurons in the postnatal cortex. Here we examine the additional role of Rac3 by analyzing Rac1/Rac3 double-mutant mice. We show that in the absence of both Rac proteins, the embryonic migration of medial ganglionic eminence-derived interneurons is further impaired. Postnatally, double-mutant mice display a dramatic loss of cortical interneurons. In addition, Rac1/Rac3-deficient interneurons show gross cytoskeletal defects in vitro, with the length of their leading processes significantly reduced and a clear multipolar morphology. We propose that in the absence of Rac1/Rac3, cortical interneurons fail to migrate tangentially towards the pallium due to defects in actin and microtubule cytoskeletal dynamics.


Assuntos
Axônios/fisiologia , Córtex Cerebral/citologia , Interneurônios/citologia , Microtúbulos/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Ciclo Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Eminência Mediana/citologia , Camundongos , Camundongos Transgênicos , Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Paclitaxel/farmacologia , Gravidez , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Moduladores de Tubulina/farmacologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA