Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407244

RESUMO

Despite the notable clinical impact, recent molecular epidemiology regarding third-generation-cephalosporin-resistant (3GC-R) Klebsiella pneumoniae in the USA remains limited. We performed whole-genome sequencing of 3GC-R K. pneumoniae bacteraemia isolates collected from March 2016 to May 2022 at a tertiary care cancer centre in Houston, TX, USA, using Illumina and Oxford Nanopore Technologies platforms. A comprehensive comparative genomic analysis was performed to dissect population structure, transmission dynamics and pan-genomic signatures of our 3GC-R K. pneumoniae population. Of the 178 3GC-R K. pneumoniae bacteraemias that occurred during our study time frame, we were able to analyse 153 (86 %) bacteraemia isolates, 126 initial and 27 recurrent isolates. While isolates belonging to the widely prevalent clonal group (CG) 258 were rarely observed, the predominant CG, 307, accounted for 37 (29 %) index isolates and displayed a significant correlation (Pearson correlation test P value=0.03) with the annual frequency of 3GC-R K. pneumoniae bacteraemia. Interestingly, only 11 % (4/37) of CG307 isolates belonged to the commonly detected 'Texas-specific' clade that has been observed in previous Texas-based K. pneumoniae antimicrobial-resistance surveillance studies. We identified nearly half of our CG307 isolates (n=18) belonged to a novel, monophyletic CG307 sub-clade characterized by the chromosomally encoded bla SHV-205 and unique accessory genome content. This CG307 sub-clade was detected in various regions of the USA, with genome sequences from 24 additional strains becoming recently available in the National Center for Biotechnology Information (NCBI) SRA database. Collectively, this study underscores the emergence and dissemination of a distinct CG307 sub-clade that is a prevalent cause of 3GC-R K. pneumoniae bacteraemia among cancer patients seen in Houston, TX, and has recently been isolated throughout the USA.


Assuntos
Bacteriemia , Klebsiella pneumoniae , Humanos , Estados Unidos/epidemiologia , Klebsiella pneumoniae/genética , Bacteriemia/epidemiologia , Hibridização Genômica Comparativa , Bases de Dados Factuais , Cefalosporinas
2.
Life (Basel) ; 13(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004332

RESUMO

Somatic copy number alterations (SCNAs) are frequently observed in high-grade ovarian serous carcinoma (HGOSC). However, their impact on gene expression levels has not been systematically assessed. In this study, we explored the relationship between recurrent SCNA and gene expression using The Cancer Genome Atlas Pan Cancer dataset (OSC, TCGA, PanCancer Atlas) to identify cancer-related genes in HGOSC. We then investigated any association between highly correlated cancer genes and clinicopathological parameters, including age of diagnosis, disease stage, overall survival (OS), and progression-free survival (PFS). A total of 772 genes with recurrent SCNAs were observed. SCNA and mRNA expression levels were highly correlated for 274 genes; 24 genes were classified as a Tier 1 gene in the Cancer Gene Census in the Catalogue of Somatic Mutations in Cancer (CGC-COSMIC). Of these, 11 Tier 1 genes had highly correlated SCNA and mRNA expression levels: TBL1XR1, PIK3CA, UBR5, EIF3E, RAD21, EXT1, RECQL4, KRAS, PRKACA, BRD4, and TPM4. There was no association between gene amplification and disease stage or PFS. EIF3E, RAD21, and EXT1 were more frequently amplified in younger patients, specifically those under the age of 55 years. Patients with tumors carrying PRKACA, BRD4, or TPM4 amplification were associated with a significantly shorter OS. RECQL4 amplification was more frequent in younger patients, and tumors with this amplification were associated with a significantly better OS.

3.
mSphere ; 8(4): e0018323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37427953

RESUMO

Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R-Ec) is an urgent public health threat with sequence type clonal complex 131 (STc131), phylogroup B2 strains being particularly concerning as the dominant cause of ESC-R-Ec infections. To address the paucity of recent ESC-R-Ec molecular epidemiology data in the United States, we used whole-genome sequencing (WGS) to fully characterize a large cohort of invasive ESC-R-Ec at a tertiary care cancer center in Houston, Texas, collected from 2016 to 2020. During the study time frame, there were 1,154 index E. coli bloodstream infections (BSIs) of which 389 (33.7%) were ESC-R-Ec. Using time series analyses, we identified a temporal dynamic of ESC-R-Ec distinct from ESC-susceptible E. coli (ESC-S-Ec), with cases peaking in the last 6 months of the calendar year. WGS of 297 ESC-R-Ec strains revealed that while STc131 strains accounted for ~45% of total BSIs, the proportion of STc131 strains remained stable across the study time frame with infection peaks driven by genetically heterogeneous ESC-R-Ec clonal complexes. bla CTX-M variants accounted for most ß-lactamases conferring the ESC-R phenotype (89%; 220/248 index ESC-R-Ec), and amplification of bla CTX-M genes was widely detected in ESC-R-Ec strains, particularly in carbapenem non-susceptible, recurrent BSI strains. Bla CTX-M-55 was significantly enriched within phylogroup A strains, and we identified bla CTX-M-55 plasmid-to-chromosome transmission occurring across non-B2 strains. Our data provide important information regarding the current molecular epidemiology of invasive ESC-R-Ec infections at a large tertiary care cancer center and provide novel insights into the genetic basis of observed temporal variability for these clinically important pathogens. IMPORTANCE Given that E. coli is the leading cause of worldwide ESC-R Enterobacterales infections, we sought to assess the current molecular epidemiology of ESC-R-Ec using a WGS analysis of many BSIs over a 5-year period. We identified fluctuating temporal dynamics of ESC-R-Ec infections, which have also recently been identified in other geographical regions such as Israel. Our WGS data allowed us to visualize the stable nature of STc131 over the study period and demonstrate a limited but genetically diverse group of ESC-R-Ec clonal complexes are detected during infection peaks. Additionally, we provide a widespread assessment of ß-lactamase gene copy number in ESC-R-Ec infections and delineate mechanisms by which such amplifications are achieved in a diverse array of ESC-R-Ec strains. These data suggest that serious ESC-R-Ec infections are driven by a diverse array of strains in our cohort and impacted by environmental factors suggesting that community-based monitoring could inform novel preventative measures.


Assuntos
Infecções por Escherichia coli , Sepse , Humanos , Cefalosporinas/farmacologia , Escherichia coli/genética , Antibacterianos , Infecções por Escherichia coli/epidemiologia , Monobactamas , beta-Lactamases/genética
4.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798241

RESUMO

Extended-spectrum cephalosporin resistant Escherichia coli (ESC-R- Ec ) is an urgent public health threat with sequence type clonal complex 131 (STc131), phylogroup B2 strains being particularly concerning as the dominant cause of ESC-R- Ec infections. To address the paucity of recent ESC-R- Ec molecular epidemiology data in the United States, we used whole genome sequencing (WGS) to fully characterize a large cohort of invasive ESC-R- Ec at a tertiary care cancer center in Houston, Texas collected from 2016-2020. During the study timeframe, there were 1154 index E. coli bloodstream infections (BSIs) of which 389 (33.7%) were ESC-R- Ec . Using time series analyses, we identified a temporal dynamic of ESC-R- Ec distinct from ESC-susceptible E. coli (ESC-S- Ec ), with cases peaking in the last six months of the calendar year. WGS of 297 ESC-R- Ec strains revealed that while STc131 strains accounted for ∼45% of total BSIs, the proportion of STc131 strains remained stable across the study time frame with infection peaks driven by genetically heterogeneous ESC-R- Ec clonal complexes. Bla CTX-M variants accounted for most ß-lactamases conferring the ESC-R phenotype (89%; 220/248 index ESC-R -Ec ), and amplification of bla CTX-M genes was widely detected in ESC-R- Ec strains, particularly in carbapenem non-susceptible, recurrent BSI strains. Bla CTX-M-55 was significantly enriched within phylogroup A strains, and we identified bla CTX-M-55 plasmid-to-chromosome transmission occurring across non-B2 strains. Our data provide important information regarding the current molecular epidemiology of invasive ESC-R- Ec infections at a large tertiary care cancer center and provide novel insights into the genetic basis of observed temporal variability for these clinically important pathogens. IMPORTANCE: Given that E. coli is the leading cause of worldwide ESC-R Enterobacterales infections, we sought to assess the current molecular epidemiology of ESC-R- Ec using a WGS analysis of many BSIs over a five-year period. We identified fluctuating temporal dynamics of ESC-R- Ec infections, which has also recently been identified in other geographical regions such as Israel. Our WGS data allowed us to visualize the stable nature of STc131 over the study period and demonstrate a limited, but genetically diverse group of ESC-R- Ec clonal complexes are detected during infection peaks. Additionally, we provide a widespread assessment of ß-lactamase gene copy number in ESC-R- Ec infections and delineate mechanisms by which such amplifications are achieved in a diverse array of ESC-R- Ec strains. These data suggest that serious ESC-R- Ec infections are driven by a diverse array of strains in our cohort and impacted by environmental factors suggesting that community-based monitoring could inform novel preventative measures.

5.
J Antimicrob Chemother ; 76(2): 385-395, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33164081

RESUMO

BACKGROUND: Approximately half of clinical carbapenem-resistant Enterobacterales (CRE) isolates lack carbapenem-hydrolysing enzymes and develop carbapenem resistance through alternative mechanisms. OBJECTIVES: To elucidate development of carbapenem resistance mechanisms from clonal, recurrent ESBL-positive Enterobacterales (ESBL-E) bacteraemia isolates in a vulnerable patient population. METHODS: This study investigated a cohort of ESBL-E bacteraemia cases in Houston, TX, USA. Oxford Nanopore Technologies long-read and Illumina short-read sequencing data were used for comparative genomic analysis. Serial passaging experiments were performed on a set of clinical ST131 Escherichia coli isolates to recapitulate in vivo observations. Quantitative PCR (qPCR) and qRT-PCR were used to determine copy number and transcript levels of ß-lactamase genes, respectively. RESULTS: Non-carbapenemase-producing CRE (non-CP-CRE) clinical isolates emerged from an ESBL-E background through a concurrence of primarily IS26-mediated amplifications of blaOXA-1 and blaCTX-M-1 group genes coupled with porin inactivation. The discrete, modular translocatable units (TUs) that carried and amplified ß-lactamase genes mobilized intracellularly from a chromosomal, IS26-bound transposon and inserted within porin genes, thereby increasing ß-lactamase gene copy number and inactivating porins concurrently. The carbapenem resistance phenotype and TU-mediated ß-lactamase gene amplification were recapitulated by passaging a clinical ESBL-E isolate in the presence of ertapenem. Clinical non-CP-CRE isolates had stable carbapenem resistance phenotypes in the absence of ertapenem exposure. CONCLUSIONS: These data demonstrate IS26-mediated mechanisms underlying ß-lactamase gene amplification with concurrent outer membrane porin disruption driving emergence of clinical non-CP-CRE. Furthermore, these amplifications were stable in the absence of antimicrobial pressure. Long-read sequencing can be utilized to identify unique mobile genetic element mechanisms that drive antimicrobial resistance.


Assuntos
Bacteriemia , Porinas , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Porinas/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(3): 960-969, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593561

RESUMO

DICER1 gene alterations and decreased expression are associated with developmental disorders and diseases in humans. Oscillation of Dicer1 phosphorylation and dephosphorylation regulates its function during the oocyte-to-embryo transition in Caenorhabditis elegans Dicer1 is also phosphorylated upon FGF stimulation at conserved serines in mouse embryonic fibroblasts and HEK293 cells. However, whether phosphorylation of Dicer1 has a role in mammalian development remains unknown. To investigate the consequence of constitutive phosphorylation, we generated phosphomimetic knock-in mouse models by replacing conserved serines 1712 and 1836 with aspartic acids individually or together. Dicer1S1836D/S1836D mice display highly penetrant postnatal lethality, and the few survivors display accelerated aging and infertility. Homozygous dual-phosphomimetic Dicer1 augments these defects, alters metabolism-associated miRNAs, and causes a hypermetabolic phenotype. Thus, constitutive phosphorylation of Dicer1 results in multiple pathologic processes in mice, indicating that phosphorylation tightly regulates Dicer1 function and activity in mammals.


Assuntos
Envelhecimento , RNA Helicases DEAD-box , Homozigoto , Mutação de Sentido Incorreto , Ribonuclease III , Envelhecimento/genética , Envelhecimento/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Fosforilação/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
7.
PLoS One ; 13(12): e0207897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517150

RESUMO

Inactivating mutations in the control of virulence two-component regulatory system (covRS) often account for the hypervirulent phenotype in severe, invasive group A streptococcal (GAS) infections. As CovR represses production of the anti-phagocytic hyaluronic acid capsule, high level capsule production is generally considered critical to the hypervirulent phenotype induced by CovRS inactivation. There have recently been large outbreaks of GAS strains lacking capsule, but there are currently no data on the virulence of covRS-mutated, acapsular strains in vivo. We investigated the impact of CovRS inactivation in acapsular serotype M4 strains using a wild-type (M4-SC-1) and a naturally-occurring CovS-inactivated strain (M4-LC-1) that contains an 11bp covS insertion. M4-LC-1 was significantly more virulent in a mouse bacteremia model but caused smaller lesions in a subcutaneous mouse model. Over 10% of the genome showed significantly different transcript levels in M4-LC-1 vs. M4-SC-1 strain. Notably, the Mga regulon and multiple cell surface protein-encoding genes were strongly upregulated-a finding not observed for CovS-inactivated, encapsulated M1 or M3 GAS strains. Consistent with the transcriptomic data, transmission electron microscopy revealed markedly altered cell surface morphology of M4-LC-1 compared to M4-SC-1. Insertional inactivation of covS in M4-SC-1 recapitulated the transcriptome and cell surface morphology. Analysis of the cell surface following CovS-inactivation revealed that the upregulated proteins were part of the Mga regulon. Inactivation of mga in M4-LC-1 reduced transcript levels of multiple cell surface proteins and reversed the cell surface alterations consistent with the effect of CovS inactivation on cell surface composition being mediated by Mga. CovRS-inactivating mutations were detected in 20% of current invasive serotype M4 strains in the United States. Thus, we discovered that hypervirulent M4 GAS strains with covRS mutations can arise in an acapsular background and that such hypervirulence is associated with profound alteration of the cell surface.


Assuntos
Streptococcus pyogenes/patogenicidade , Animais , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/ultraestrutura , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Feminino , Genes Bacterianos , Histidina Quinase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Regulon , Proteínas Repressoras/genética , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/ultraestrutura , Virulência/genética , Sequenciamento Completo do Genoma
8.
Microb Genom ; 4(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30412460

RESUMO

Group A Streptococcus (GAS) is classified on the basis of the sequence of the gene encoding the M protein (emm) and the patterns into which emm types are grouped. We discovered a novel emm pattern in emm4 GAS, historically considered pattern E, arising from a fusion event between emm and the adjacent enn gene. We identified the emm-enn fusion event in 51 out of 52 emm4 GAS strains isolated by national surveillance in 2015. GAS isolates with an emm-enn fusion event completely replaced pattern E emm4 strains over a 4-year span in Houston (2013-2017). The novel emm-enn gene fusion and new emm pattern has potential vaccine implications.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Fusão Gênica , Streptococcus pyogenes/genética , Proteínas de Bactérias/genética , Humanos , Streptococcus pyogenes/isolamento & purificação
9.
Clin Infect Dis ; 67(3): 398-406, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29546356

RESUMO

Background: Pathobionts, bacteria that are typically human commensals but can cause disease, contribute significantly to antimicrobial resistance. Staphylococcus epidermidis is a prototypical pathobiont as it is a ubiquitous human commensal but also a leading cause of healthcare-associated bacteremia. We sought to determine the etiology of a recent increase in invasive S. epidermidis isolates resistant to linezolid. Methods: Whole-genome sequencing (WGS) was performed on 176 S. epidermidis bloodstream isolates collected at the MD Anderson Cancer Center in Houston, Texas, between 2013 and 2016. Molecular relationships were assessed via complementary phylogenomic approaches. Abundance of the linezolid resistance determinant cfr was determined in stool samples via reverse-transcription quantitative polymerase chain reaction. Results: Thirty-nine of the 176 strains were linezolid resistant (22%). Thirty-one of the 39 linezolid-resistant S. epidermidis infections were caused by a particular clone resistant to multiple antimicrobials that spread among leukemia patients and carried cfr on a 49-kb plasmid (herein called pMB151a). The 6 kb of pMB151a surrounding the cfr gene was nearly 100% identical to a cfr-containing plasmid isolated from livestock-associated staphylococci in China. Analysis of serial stool samples from leukemia patients revealed progressive staphylococcal domination of the intestinal microflora and an increase in cfr abundance following linezolid use. Conclusions: The combination of linezolid use plus transmission of a multidrug-resistant clone drove expansion of invasive, linezolid-resistant S. epidermidis. Our results lend support to the notion that a combination of antibiotic stewardship plus infection control measures may help to control the spread of a multidrug-resistant pathobiont.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Linezolida/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Gestão de Antimicrobianos , Proteínas de Bactérias/genética , Evolução Molecular , Fezes/microbiologia , Humanos , Microbiota , Staphylococcus epidermidis/efeitos dos fármacos , Sequenciamento Completo do Genoma
10.
Sci Rep ; 7(1): 5123, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698607

RESUMO

Within macrophages and amoeba, the Legionella-containing vacuole (LCV) membrane is derived from the ER. The bona fide F-box AnkB effector protein of L. pneumophila strain AA100/130b is anchored to the cytosolic side of the LCV membrane through host-mediated farnesylation of its C-terminal eukaryotic "CaaX" motif. Here we show that the AnkB homologue of the Paris strain has a frame shift mutation that led to a loss of the CaaX motif and a concurrent generation of a unique C-terminal KNKYAP motif, which resembles the eukaryotic di-lysine ER-retention motif (KxKxx). Our phylogenetic analyses indicate that environmental isolates of L. pneumophila have a potential positive selection for the ER-retention KNKYAP motif. The AnkB-Paris effector is localized to the LCV membrane most likely through the ER-retention motif. Its ectopic expression in HEK293T cells localizes it to the perinuclear ER region and it trans-rescues the ankB mutant of strain AA100/130b in intra-vacuolar replication. The di-lysine ER retention motif of AnkB-Paris is indispensable for function; most likely as an ER retention motif that enables anchoring to the ER-derived LCV membrane. Our findings show divergent evolution of the ankB allele in exploiting either host farnesylation or the ER retention motif to be anchored into the LCV membrane.


Assuntos
Anquirinas/química , Anquirinas/genética , Retículo Endoplasmático/microbiologia , Legionella/patogenicidade , Vacúolos/microbiologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Retículo Endoplasmático/metabolismo , Mutação da Fase de Leitura , Células HEK293 , Humanos , Legionella/genética , Lisina/metabolismo , Filogenia , Prenilação , Vacúolos/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
11.
Front Microbiol ; 8: 62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174569

RESUMO

The taxonomy of Enterobacter species is rapidly changing. Herein we report a bloodstream infection isolate originally identified as Enterobacter cloacae by Vitek2 methodology that we found to be Kosakonia radicincitans using genetic means. Comparative whole genome sequencing of our isolate and other published Kosakonia genomes revealed these organisms lack the AmpC ß-lactamase present on the chromosome of Enterobacter sp. A fimbriae operon primarily found in Escherichia coli O157:H7 isolates was present in our organism and other available K. radicincitans genomes. This is the first report of a Kosakonia species, which are typically associated with plants, causing a human infection.

12.
Genome Announc ; 4(2)2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056234

RESUMO

Streptococcus mitisfrequently causes invasive infections in neutropenic cancer patients, with a subset of patients developing viridans group streptococcal (VGS) shock syndrome. We report here the first complete genome sequence ofS. mitisstrain SVGS_061, which caused VGS shock syndrome, to help elucidate the pathogenesis of severe VGS infection.

13.
Genome Announc ; 3(5)2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26430051

RESUMO

ß-Hemolytic group C and group G streptococci (GCS-GGS; Streptococcus dysgalactiae subsp. equisimilis) emerged as human pathogens in the late 1970s. We report here the draft genome sequences of four genetically distinct human strains of GCS-GGS isolated between the 1960s and 1980s. Comparative analysis of these genomes may provide a deeper understanding of GCS-GGS genome and virulence evolution.

14.
Dev Cell ; 31(5): 614-28, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490268

RESUMO

Signaling pathways and small RNAs direct diverse cellular events, but few examples are known of defined signaling pathways directly regulating small RNA biogenesis. We show that ERK phosphorylates Dicer on two conserved residues in its RNase IIIb and double-stranded RNA (dsRNA)-binding domains and that phosphorylation of these residues is necessary and sufficient to trigger Dicer's nuclear translocation in worms, mice, and human cells. Phosphorylation of Dicer on either site inhibits Dicer function in the female germline and dampens small RNA repertoire. Our data demonstrate that ERK phosphorylates and inhibits Dicer during meiosis I for oogenesis to proceed normally in Caenorhabditis elegans and that this inhibition is released before fertilization for embryogenesis to proceed normally. The conserved Dicer residues, their phosphorylation by ERK, and the consequences of the resulting modifications implicate an ERK-Dicer nexus as a fundamental component of the oocyte-to-embryo transition and an underlying mechanism coupling extracellular cues to small RNA production.


Assuntos
Caenorhabditis elegans/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Oócitos/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Animais , Sequência de Bases/fisiologia , Caenorhabditis elegans/embriologia , Camundongos , Oogênese/fisiologia , Fosforilação
15.
PLoS One ; 8(3): e59560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555707

RESUMO

Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Chaperonina 60/metabolismo , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Genes Bacterianos/genética , Proteínas de Choque Térmico/metabolismo , Helicobacter pylori/metabolismo , Humanos , Dados de Sequência Molecular , Polimorfismo Genético , Transporte Proteico , Seleção Genética , Especificidade da Espécie
16.
PLoS One ; 5(11): e15076, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21124785

RESUMO

BACKGROUND: The gastric pathogen Helicobacter pylori is extraordinary in its genetic diversity, the differences between strains from well-separated human populations, and the range of diseases that infection promotes. PRINCIPAL FINDINGS: Housekeeping gene sequences from H. pylori from residents of an Amerindian village in the Peruvian Amazon, Shimaa, were related to, but not intermingled with, those from Asia. This suggests descent of Shimaa strains from H. pylori that had infected the people who migrated from Asia into The Americas some 15,000+ years ago. In contrast, European type sequences predominated in strains from Amerindian Lima shantytown residents, but with some 12% Amerindian or East Asian-like admixture, which indicates displacement of ancestral purely Amerindian strains by those of hybrid or European ancestry. The genome of one Shimaa village strain, Shi470, was sequenced completely. Its SNP pattern was more Asian- than European-like genome-wide, indicating a purely Amerind ancestry. Among its unusual features were two cagA virulence genes, each distinct from those known from elsewhere; and a novel allele of gene hp0519, whose encoded protein is postulated to interact with host tissue. More generally, however, the Shi470 genome is similar in gene content and organization to those of strains from industrialized countries. CONCLUSIONS: Our data indicate that Shimaa village H. pylori descend from Asian strains brought to The Americas many millennia ago; and that Amerind strains are less fit than, and were substantially displaced by, hybrid or European strains in less isolated communities. Genome comparisons of H. pylori from Amerindian and other communities should help elucidate evolutionary forces that have shaped pathogen populations in The Americas and worldwide.


Assuntos
Genoma Bacteriano/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Indígenas Sul-Americanos , América , Sequência de Aminoácidos , Ásia , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Emigração e Imigração , Europa (Continente) , Variação Genética , Helicobacter pylori/classificação , Helicobacter pylori/isolamento & purificação , Humanos , Dados de Sequência Molecular , Peru , Filogenia , Dinâmica Populacional , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Tempo
17.
Trends Microbiol ; 18(3): 132-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19962898

RESUMO

The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature, and is predominantly found in eukaryotic proteins. Genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses has identified numerous genes encoding ANK-containing proteins that are proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells, where they mimic or manipulate various host functions. Studying the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions.


Assuntos
Repetição de Anquirina , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Evolução Molecular , Proteínas Virais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/metabolismo
18.
PLoS Pathog ; 5(12): e1000704, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20041211

RESUMO

The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the (9)L(10)P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-(9)L(10)P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-(9)L(10)P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts.


Assuntos
Anquirinas/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Macrófagos/parasitologia , Mimetismo Molecular/imunologia , Acanthamoeba/metabolismo , Acanthamoeba/parasitologia , Animais , Proteínas de Bactérias/metabolismo , Dictyostelium/metabolismo , Dictyostelium/parasitologia , Humanos , Imunoprecipitação , Legionella pneumophila/metabolismo , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Transporte Proteico/fisiologia , Transfecção , Ubiquitinação
19.
PLoS One ; 4(9): e6859, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19727398

RESUMO

BACKGROUND: Genes present in only certain strains of a bacterial species can strongly affect cellular phenotypes and evolutionary potentials. One segment that seemed particularly rich in strain-specific genes was found by comparing the first two sequenced Helicobacter pylori genomes (strains 26695 and J99) and was named a "plasticity zone". PRINCIPAL FINDINGS: We studied the nature and evolution of plasticity zones by sequencing them in five more Helicobacter strains, determining their locations in additional strains, and identifying them in recently released genome sequences. They occurred as discrete units, inserted at numerous chromosomal sites, and were usually flanked by direct repeats of 5'AAGAATG, a sequence generally also present in one copy at unoccupied sites in other strains. This showed that plasticity zones are transposable elements, to be called TnPZs. Each full length TnPZ contained a cluster of type IV protein secretion genes (tfs3), a tyrosine recombinase family gene ("xerT"), and a large (>or=2800 codon) orf encoding a protein with helicase and DNA methylase domains, plus additional orfs with no homology to genes of known function. Several TnPZ types were found that differed in gene arrangement or DNA sequence. Our analysis also indicated that the first-identified plasticity zones (in strains 26695 and J99) are complex mosaics of TnPZ remnants, formed by multiple TnPZ insertions, and spontaneous and transposable element mediated deletions. Tests using laboratory-generated deletions showed that TnPZs are not essential for viability, but identified one TnPZ that contributed quantitatively to bacterial growth during mouse infection and another that affected synthesis of proinflammatory cytokines in cell culture. CONCLUSIONS: We propose that plasticity zone genes are contained in conjugative transposons (TnPZs) or remnants of them, that TnPZ insertion is mediated by XerT recombinase, and that some TnPZ genes affect bacterial phenotypes and fitness.


Assuntos
Elementos de DNA Transponíveis , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Citocinas/metabolismo , DNA Bacteriano/análise , Deleção de Genes , Genes Bacterianos , Genoma Bacteriano , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Análise de Sequência de DNA
20.
FEBS Lett ; 583(10): 1637-43, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19393649

RESUMO

Helicobacter pylori genomes typically contain 8 or 9 genes that code for secreted and highly disulfide-bridged proteins designated Helicobacter cysteine-rich proteins (Hcp). Here we show that HcpA (hp0211) but not HcpC (hp1098) triggers the differentiation of human myeloid Thp1 monocytes into macrophages. Small amounts of HcpA cause the transition of round-shaped monocytes into cells with star-like morphologies, adherence to the culture dish surface, phagocytosis of opsonized fluorescent microspheres, and expression of the surface marker protein CD11b, all of which are indicative of a macrophage-like phenotype. We conclude that HcpA acts as a bacterial immune modulator similar to a eukaryotic cytokine.


Assuntos
Proteínas de Bactérias/metabolismo , Diferenciação Celular , Helicobacter pylori/metabolismo , Macrófagos/citologia , Monócitos/citologia , beta-Lactamases/metabolismo , Adesão Celular , Humanos , Macrófagos/metabolismo , Microscopia Eletrônica de Varredura , Monócitos/metabolismo , Fagocitose , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...