Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Neurotherapeutics ; 21(3): e00348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579455

RESUMO

Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiologia , Animais , Neurociências/métodos
2.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561111

RESUMO

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Assuntos
Estimulação Acústica , Estimulação Encefálica Profunda , Doença de Parkinson , Parte Reticular da Substância Negra , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Masculino , Pessoa de Meia-Idade , Feminino , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Idoso , Parte Reticular da Substância Negra/fisiologia , Estimulação Encefálica Profunda/métodos , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Substância Negra/fisiologia , Adulto
3.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605039

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Gânglios da Base/fisiologia , Neurônios/fisiologia
4.
Mol Neurobiol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581539

RESUMO

Parkinson's disease (PD) is a progressive neurogenerative movement disorder characterized by dopaminergic cell death within the substantia nigra pars compacta (SNpc) due to the aggregation-prone protein α-synuclein. Accumulation of α-synuclein is implicated in mitochondrial dysfunction and disruption of the autophagic turnover of mitochondria, or mitophagy, which is an essential quality control mechanism proposed to preserve mitochondrial fidelity in response to aging and stress. Yet, the precise relationship between α-synuclein accumulation, mitochondrial autophagy, and dopaminergic cell loss remains unresolved. Here, we determine the kinetics of α-synuclein overexpression and mitophagy using the pH-sensitive fluorescent mito-QC reporter. We find that overexpression of mutant A53T α-synuclein in either human SH-SY5Y cells or rat primary cortical neurons induces mitophagy. Moreover, the accumulation of mutant A53T α-synuclein in the SNpc of rats results in mitophagy dysregulation that precedes the onset of dopaminergic neurodegeneration. This study reveals a role for mutant A53T α-synuclein in inducing mitochondrial dysfunction, which may be an early event contributing to neurodegeneration.

5.
J Parkinsons Dis ; 14(3): 415-435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457149

RESUMO

Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Animais
6.
J Neurosurg ; : 1-13, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518284

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for medically refractory movement disorders and other neurological conditions. To comprehensively characterize the prevalence, locations, timing of detection, clinical effects, and risk factors of DBS-related intracranial hemorrhage (ICH), the authors performed a systematic review of the published literature. METHODS: PubMed, EMBASE, and Web of Science were searched using 2 concepts: cerebral hemorrhage and brain stimulation, with filters for English, human studies, and publication dates 1980-2023. The inclusion criteria were the use of DBS intervention for any human neurological condition, with documentation of hemorrhagic complications by location and clinical effect. Studies with non-DBS interventions, no documentation of hemorrhage outcome, patient cohorts of ≤ 10, and pediatric patients were excluded. The risk of bias was assessed using Centre for Evidence-Based Medicine Levels of Evidence. The authors performed proportional meta-analysis for ICH prevalence. RESULTS: A total of 63 studies, with 13,056 patients, met the inclusion criteria. The prevalence of ICH was 2.9% (fixed-effects model, 95% CI 2.62%-3.2%) per patient and 1.6% (random-effects model, 95% CI 1.34%-1.87%) per DBS lead, with 49.6% being symptomatic. The ICH rates did not change with time. ICH most commonly occurred around the DBS lead, with 16% at the entry point, 31% along the track, and 7% at the target. Microelectrode recording (MER) during DBS was associated with increased ICH rate compared to DBS without MER (3.5 ± 2.2 vs 2.1 ± 1.4; p[T ≤ t] 1-tail = 0.038). Other reported ICH risk factors include intraoperative systolic blood pressure > 140 mm Hg, sulcal DBS trajectories, and multiple microelectrode insertions. Sixty percent of ICH was detected at 24 hours postoperatively and 27% intraoperatively. The all-cause mortality rate of DBS was 0.4%, with ICH accounting for 22% of deaths. Single-surgeon DBS experience showed a weak inverse correlation (r = -0.27, p = 0.2189) between the rate of ICH per lead and the number of leads implanted per year. CONCLUSIONS: This study provides level III evidence that MER during DBS is a risk factor for ICH. Other risk factors include intraoperative systolic blood pressure > 140 mm Hg, sulcal trajectories, and multiple microelectrode insertions. Avoidance of these risk factors may decrease the rate of ICH.

7.
Brain Stimul ; 17(2): 166-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342364

RESUMO

BACKGROUND: Deep brain stimulation (DBS) has been widely used to manage debilitating neurological symptoms in movement disorders such as Parkinson's disease (PD). Despite its well-established symptomatic benefits, our understanding of the mechanisms underlying DBS and its possible effect on the accumulation of pathological proteins in neurodegeneration remains limited. Accumulation and oligomerization of the protein alpha-synuclein (α-Syn) are implicated in the loss of dopaminergic neurons in the substantia nigra in PD, making α-Syn a potential therapeutic target for disease modification. OBJECTIVE: We examined the effects of high frequency electrical stimulation on α-Syn levels and oligomerization in cell and rodent models. METHODS: High frequency stimulation, mimicking DBS parameters used for PD, was combined with viral-mediated overexpression of α-Syn in cultured rat primary cortical neurons or in substantia nigra of rats. Bimolecular protein complementation with split fluorescent protein reporters was used to detect and quantify α-Syn oligomers. RESULTS: High frequency electrical stimulation reduced the expression of PD-associated mutant α-Syn and mitigated α-Syn oligomerization in cultured neurons. Furthermore, DBS in the substantia nigra, but not the subthalamic nucleus, decreased overall levels of α-Syn, including oligomer levels, in the substantia nigra. CONCLUSIONS: Taken together, our results demonstrate that direct high frequency stimulation can reduce accumulation and pathological forms of α-Syn in cultured neurons in vitro and in substantia nigra in vivo. Thus, DBS therapy could have a role beyond symptomatic treatment, with potential disease-modifying properties that can be exploited to target pathological proteins in neurodegenerative diseases.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Estimulação Encefálica Profunda/métodos , Ratos , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Substância Negra/metabolismo , Células Cultivadas , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Estimulação Elétrica/métodos
9.
J Parkinsons Dis ; 14(2): 353-355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38251064

RESUMO

The study "A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease" by Milekovic et al. introduces a novel neuroprosthesis for treating locomotor deficits in late-stage Parkinson's disease (PD). This approach employs an epidural spinal array targeting dorsal roots and electromyography to create a spatiotemporal map of muscle activation, aiming to restore natural gait patterns. Significant improvements in gait freezing and balance were observed in both non-human primate models and a human patient, resulting in improved mobility and quality of life. This innovative method, integrating real-time feedback and non-invasive motor intention decoding, marks a significant advancement in PD treatment.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Qualidade de Vida , Marcha/fisiologia , Medula Espinal
10.
Pharmacoeconomics ; 42(1): 41-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37751075

RESUMO

BACKGROUND: Movement disorders (Parkinson's disease, essential tremor, primary dystonia) are a debilitating group of conditions that are progressive in nature. The mainstay of treatment is best medical therapy; however, a number of surgical therapies are available, including deep brain stimulation. Economic evaluations are an important aspect of evidence to inform decision makers regarding funding allocated to these therapies. OBJECTIVE: This systematic review and meta-analysis evaluated the cost effectiveness of including deep brain stimulation compared with best medical therapy for movement disorder indications in the adult population. METHODS: Ovid Medical Literature Analysis and Retrieval System Online, Embase, and Cochrane Central Register of Controlled Trials were queried. Only economic evaluations reporting incremental cost-effectiveness ratios for including deep brain stimulation versus best medical therapy for movement disorders were included. Studies were reviewed in duplicate for inclusion and data abstraction. Data were harmonized using the Consumer Price Index and Purchasing Power Parity to standardize values to 2022 US dollars. For inclusion in meta-analyses, studies were required to have sufficient data available to calculate an estimate of the incremental net benefit. Meta-analyses of pooled incremental net benefit based on the time horizon were performed. The study was registered at PROSPERO (CRD42022335436). RESULTS: There were 2190 studies reviewed, with 14 economic evaluations included following a title/abstract and full-text review. Only studies considering Parkinson's disease were available for the meta-analysis. Quality of the identified studies was low, with moderate transferability to the American Healthcare System, and certainty of evidence was low. However, studies with a longer time horizon (15 years to lifetime) were found to have significant positive incremental net benefit (indicating cost effectiveness) for including deep brain stimulation with a mean difference of US$40,504.81 (95% confidence interval 2422.42-78,587.19). CONCLUSIONS: Deep brain stimulation was cost effective for Parkinson's disease when considered over the course of the patient's remaining life after implantation. TRIAL REGISTRATION: Clinical Trial Registration: PROSPERO (CRD42022335436).


Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos , Humanos , Análise Custo-Benefício , Doença de Parkinson/terapia , Transtornos dos Movimentos/terapia
11.
Neuromodulation ; 27(3): 464-475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37140523

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for movement disorders, including Parkinson disease and essential tremor. However, the underlying mechanisms of DBS remain elusive. Despite the capability of existing models in interpreting experimental data qualitatively, there are very few unified computational models that quantitatively capture the dynamics of the neuronal activity of varying stimulated nuclei-including subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), and ventral intermediate nucleus (Vim)-across different DBS frequencies. MATERIALS AND METHODS: Both synthetic and experimental data were used in the model fitting; the synthetic data were generated by an established spiking neuron model that was reported in our previous work, and the experimental data were provided using single-unit microelectrode recordings (MERs) during DBS (microelectrode stimulation). Based on these data, we developed a novel mathematical model to represent the firing rate of neurons receiving DBS, including neurons in STN, SNr, and Vim-across different DBS frequencies. In our model, the DBS pulses were filtered through a synapse model and a nonlinear transfer function to formulate the firing rate variability. For each DBS-targeted nucleus, we fitted a single set of optimal model parameters consistent across varying DBS frequencies. RESULTS: Our model accurately reproduced the firing rates observed and calculated from both synthetic and experimental data. The optimal model parameters were consistent across different DBS frequencies. CONCLUSIONS: The result of our model fitting was in agreement with experimental single-unit MER data during DBS. Reproducing neuronal firing rates of different nuclei of the basal ganglia and thalamus during DBS can be helpful to further understand the mechanisms of DBS and to potentially optimize stimulation parameters based on their actual effects on neuronal activity.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Humanos , Gânglios da Base/fisiologia , Núcleo Subtalâmico/fisiologia , Tálamo/fisiologia , Neurônios/fisiologia
12.
J Neurosurg ; 140(1): 218-230, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382356

RESUMO

A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.


Assuntos
Conectoma , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Simulação por Computador , Conectoma/métodos , Neuroimagem , Rede Nervosa
13.
J Neurol Neurosurg Psychiatry ; 95(2): 180-183, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722831

RESUMO

BACKGROUND: Given high rates of early complications and non-reversibility, refined targeting is necessitated for magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy for essential tremor (ET). Selection of lesion location can be informed by considering optimal stimulation area from deep brain stimulation (DBS). METHODS: 118 patients with ET who received DBS (39) or MRgFUS (79) of the ventral intermediate nucleus (VIM) underwent stimulation/lesion mapping, probabilistic mapping of clinical efficacy and normative structural connectivity analysis. The efficacy maps were compared, which depict the relationship between stimulation/lesion location and clinical outcome. RESULTS: Efficacy maps overlap around the VIM ventral border and encompass the dentato-rubro-thalamic tract. While the MRgFUS map extends inferiorly into the posterior subthalamic area, the DBS map spreads inside the VIM antero-superiorly. CONCLUSION: Comparing the efficacy maps of DBS and MRgFUS suggests a potential alternative location for lesioning, more antero-superiorly. This may reduce complications, without sacrificing efficacy, and individualise targeting. TRIAL REGISTRATION NUMBER: NCT02252380.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Resultado do Tratamento , Tremor
14.
J Neurol Neurosurg Psychiatry ; 95(2): 167-170, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37438098

RESUMO

BACKGROUND: The loss of the ability to swim following deep brain stimulation (DBS), although rare, poses a worrisome risk of drowning. It is unclear what anatomic substrate and neural circuitry underlie this phenomenon. We report a case of cervical dystonia with lost ability to swim and dance during active stimulation of globus pallidus internus. We investigated the anatomical underpinning of this phenomenon using unique functional and structural imaging analysis. METHODS: Tesla (3T) functional MRI (fMRI) of the patient was used during active DBS and compared with a cohort of four matched patients without this side effect. Structural connectivity mapping was used to identify brain network engagement by stimulation. RESULTS: fMRI during stimulation revealed significant (Pbonferroni<0.0001) stimulation-evoked responses (DBS ON

Assuntos
Estimulação Encefálica Profunda , Globo Pálido , Humanos , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiologia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Imageamento por Ressonância Magnética
15.
J Neurosurg ; 140(3): 639-647, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657095

RESUMO

OBJECTIVE: The use of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of tremor-related disorders and other novel indications has been limited by guidelines advocating treatment of patients with a skull density ratio (SDR) above 0.45 ± 0.05 despite reports of successful outcomes in patients with a low SDR (LSDR). The authors' goal was to retrospectively analyze the sonication strategies, adverse effects, and clinical and imaging outcomes in patients with SDR ≤ 0.4 treated for tremor using MRgFUS. METHODS: Clinical outcomes and adverse effects were assessed at 3 and 12 months after MRgFUS. Outcomes and lesion location, volume, and shape characteristics (elongation and eccentricity) were compared between the SDR groups. RESULTS: A total of 102 consecutive patients were included in the analysis, of whom 39 had SDRs ≤ 0.4. No patient was excluded from treatment because of an LSDR, with the lowest being 0.22. Lesioning temperatures (> 52°C) and therapeutic ablations were achieved in all patients. There were no significant differences in clinical outcome, adverse effects, lesion location, and volume between the high SDR group and the LSDR group. SDR was significantly associated with total energy (rho = -0.459, p < 0.001), heating efficiency (rho = 0.605, p < 0.001), and peak temperature (rho = 0.222, p = 0.025). CONCLUSIONS: The authors' results show that treatment of tremor in patients with an LSDR using MRgFUS is technically possible, leading to a safe and lasting therapeutic effect. Limiting the number of sonications and adjusting the energy and duration to achieve the required temperature early during the treatment are suitable strategies in LSDR patients.


Assuntos
Crânio , Tremor , Humanos , Estudos Retrospectivos , Tremor/diagnóstico por imagem , Tremor/terapia , Cabeça , Espectroscopia de Ressonância Magnética
16.
Neurobiol Dis ; 190: 106384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135193

RESUMO

External sensory cues can reduce freezing of gait in people with Parkinson's disease (PD), yet the role of the basal ganglia in these movements is unclear. We used microelectrode recordings to examine modulations in single unit (SU) and oscillatory local field potentials (LFP) during auditory-cued rhythmic pedaling movements of the feet. We tested five blocks of increasing cue frequencies (1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz) in 24 people with PD undergoing deep brain stimulation surgery of the subthalamic nucleus (STN) or globus pallidus internus (GPi). Single unit firing and beta band LFPs (13-30 Hz) in response to movement onsets or cue onsets were examined. We found that the timing accuracy of foot pedaling decreased with faster cue frequencies. Increasing cue frequencies also attenuated firing rates in both STN and GPi neurons. Peak beta power in the GPi and STN showed different responses to the task. GPi beta power showed persistent suppression with fast cues and phasic modulation with slow cues. STN beta power showed enhanced beta synchronization following movement. STN beta power also correlated with rate of pedaling. Overall, we showed task-related responses in the GPi and STN during auditory-cued movements with differential roles in sensory and motor control. The results suggest a role for both input and output basal ganglia nuclei in auditory rhythmic pacing of gait-like movements in PD.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Globo Pálido/fisiologia , Sinais (Psicologia) , Núcleo Subtalâmico/fisiologia , Neurônios/fisiologia , Estimulação Encefálica Profunda/métodos
17.
Lancet Reg Health Am ; 26: 100599, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876670

RESUMO

Background: Deep brain stimulation (DBS) is an approved treatment option for Parkinson's Disease (PD), essential tremor (ET), dystonia, obsessive-compulsive disorder and epilepsy in the United States. There are disparities in access to DBS, and clear understanding of the contextual factors driving them is important. Previous studies aimed at understanding these factors have been limited by single indications or small cohort sizes. The aim of this study is to provide an updated and comprehensive analysis of DBS utilization for multiple indications to better understand the factors driving disparities in access. Methods: The United States based National Inpatient Sample (NIS) database was utilized to analyze the surgical volume and trends of procedures based on indication, using relevant ICD codes. Predictors of DBS use were analyzed using a logistic regression model. DBS-implanted patients in each indication were compared based on the patient-, hospital-, and outcome-related variables. Findings: Our analysis of 104,356 DBS discharges from 1993 to 2017 revealed that the most frequent indications for DBS were PD (67%), ET (24%), and dystonia (4%). Although the number of DBS procedures has consistently increased over the years, radiofrequency ablation utilization has significantly decreased to only a few patients per year since 2003. Negative predictors for DBS utilization in PD and ET cohorts included age increase and female sex, while African American status was a negative predictor across all cohorts. Significant differences in patient-, hospital-, and outcome-related variables between DBS indications were also determined. Interpretation: Demographic and socioeconomic-based disparities in DBS use are evident. Although racial disparities are present across all indications, other disparities such as age, sex, wealth, and insurance status are only relevant in certain indications. Funding: This work was supported by Alan & Susan Hudson Cornerstone Chair in Neurosurgery at University Health Network.

18.
Acta Biomater ; 171: 392-405, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683963

RESUMO

The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.


Assuntos
Criogéis , Células-Tronco Neurais , Eletrodos , Neurônios/fisiologia , Condutividade Elétrica , Estimulação Elétrica , Eletrodos Implantados
19.
Neurooncol Adv ; 5(1): vdad091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547265

RESUMO

Background: In patients with glioma, clinical manifestations of neural network disruption include behavioral changes, cognitive decline, and seizures. However, the extent of network recovery following surgery remains unclear. The aim of this study was to characterize the neurophysiologic and functional connectivity changes following glioma surgery using magnetoencephalography (MEG). Methods: Ten patients with newly diagnosed intra-axial brain tumors undergoing surgical resection were enrolled in the study and completed at least two MEG recordings (pre-operative and immediate post-operative). An additional post-operative recording 6-8 weeks following surgery was obtained for six patients. Resting-state MEG recordings from 28 healthy controls were used for network-based comparisons. MEG data processing involved artifact suppression, high-pass filtering, and source localization. Functional connectivity between parcellated brain regions was estimated using coherence values from 116 virtual channels. Statistical analysis involved standard parametric tests. Results: Distinct alterations in spectral power following tumor resection were observed, with at least three frequency bands affected across all study subjects. Tumor location-related changes were observed in specific frequency bands unique to each patient. Recovery of regional functional connectivity occurred following glioma resection, as determined by local coherence normalization. Changes in inter-regional functional connectivity were mapped across the brain, with comparable changes in low to mid gamma-associated functional connectivity noted in four patients. Conclusion: Our findings provide a framework for future studies to examine other network changes in glioma patients. We demonstrate an intrinsic capacity for neural network regeneration in the post-operative setting. Further work should be aimed at correlating neurophysiologic changes with individual patients' clinical outcomes.

20.
Mov Disord ; 38(11): 2121-2125, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544011

RESUMO

BACKGROUND: Multiple system atrophy with parkinsonism (MSA-P) is a progressive condition with no effective treatment. OBJECTIVE: The aim of this study was to describe the safety and efficacy of deep brain stimulation (DBS) of globus pallidus pars interna and externa in a cohort of patients with MSA-P. METHODS: Six patients were included. Changes in Movement Disorders Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III), Parkinson's Disease Questionnaire (PDQ-39) scores, and levodopa equivalent daily dose were compared before and after DBS. Electrode localization and volume tissue activation were calculated. RESULTS: DBS surgery did not result in any major adverse events or intraoperative complications. Overall, no differences in MDS-UPDRS III scores were demonstrated (55.2 ± 17.6 preoperatively compared with 67.3 ± 19.2 at 1 year after surgery), although transient improvement in mobility and dyskinesia was reported in some subjects. CONCLUSIONS: Globus pallidus pars interna and externa DBS for patients with MSA-P did not result in major complications, although it did not provide significant clinical benefit as measured by MDS-UPDRS III. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Globo Pálido/cirurgia , Núcleo Subtalâmico/cirurgia , Estimulação Encefálica Profunda/efeitos adversos , Atrofia de Múltiplos Sistemas/terapia , Atrofia de Múltiplos Sistemas/etiologia , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...