Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26754, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434305

RESUMO

Purpose: This study identified critical constraints in technology adoption for Direct Seeded Rice (DSR) compared with puddled transplanted rice (PTR) practices. We present the impact of DSR technology adoption on paddy yield, income generation, and cost incurred on various farm operations. Furthermore, the study investigates whether a dry DSR practice provides more economic and production benefits than a wet DSR. Methodology: We used a multi-stage sampling (from state to district-to-village-to-farmers) and conducted a face-to-face questionnaire survey to collect primary farm-level data. We collected 669 farm and household-level data and analyzed the impact of DSR and dry DSR adoption over PTR and wet DSR, respectively. Initially, the study employed probit regression analysis to identify the DSR adoption determinants. Subsequently, using the Propensity Score Matching approach, the study measures the impact of DSR adoption over PTR in terms of yield, income, and cost management. Finally, using the PSM approach, the study estimated the impact of dry DSR adoption over wet DSR. Findings: Probit estimates suggest that variables like education, membership in farmers' organizations, farm experience, institutional credit, crop insurance, off-farm income, and smartphone and television ownership positively regulate DSR adoption. The impact assessment analysis reveals that the adoption of DSR over PTR results in marginal yield improvement. However, the cost of irrigation, land preparation, and fertilization is significantly lower in DSR, resulting in an additional income of ₹5192/acre for DSR adopters. Moreover, a comparative analysis between dry DSR and wet DSR indicates that farmers can achieve ₹2467/acre by adopting dry DSR. Practical implications: Our research findings designate the necessity for implementing policies and strategies to promote the adoption of DSR among non-adopters. Besides economic benefits, adopting the DSR method can yield environmental benefits, improve soil health, mitigate soil erosion, and decrease water use.

2.
Agron Sustain Dev ; 43(2): 31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974061

RESUMO

Zero Budget Natural Farming (ZBNF) is a grassroot agrarian movement and a state backed extension in Andhra Pradesh, and has been claimed to potentially meet the twin goals of global food security and environmental conservation. However, there is a lack of statistically evaluated data to support assertions of yield benefits of ZBNF compared to organic or conventional alternatives, or to mechanistically account for them. In order to fill this gap, controlled field experiments were established in twenty-eight farms across six districts, spanning over 800 km, over three cropping seasons. In these experiments, we compared ZBNF (no synthetic pesticides or fertilisers, home-made inputs comprising desi cow dung and urine with mulch) to conventional (synthetic fertilisers and pesticides) and organic (no synthetic pesticides or fertilisers, no mulch, purchased organic inputs, e.g. farmyard manure and vermicompost) treatments, all with no tillage. Comparisons were made in terms of yield, soil pH, temperature, moisture content, nutrient content and earthworm abundance. Our data shows that yield was significantly higher in the ZBNF treatment (z score = 0.58 ± 0.08), than the organic (z= -0.34 ± 0.06) or conventional (-0.24 ± 0.07) treatment when all farm experiments were analysed together. However, the efficacy of the ZBNF treatment was context specific and varied according to district and the crop in question. The ZBNF yield benefit is likely attributed to mulching, generating a cooler soil, with a higher moisture content and a larger earthworm population. There were no significant differences between ZBNF and the conventional treatment in the majority of nutrients. This is a particularly important observation, as intensive use of synthetic pesticides and fertilisers comes with a number of associated risks to farmers' finances, human health, greenhouse gas emissions, biodiversity loss and environmental pollution. However, long-term field and landscape scale trials are needed to corroborate these initial observations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00884-x.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...