Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Front Mol Neurosci ; 17: 1386219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807924

RESUMO

The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.

3.
J Pediatr ; 266: 113866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061422

RESUMO

OBJECTIVE: To compare hypoxic-ischemic injury on early cranial ultrasonography (cUS) and post-rewarming brain magnetic resonance imaging (MRI) in newborn infants with hypoxic-ischemic encephalopathy (HIE) and to correlate that neuroimaging with neurodevelopmental outcomes. STUDY DESIGN: This was a retrospective cohort study of infants with mild, moderate, and severe HIE treated with therapeutic hypothermia and evaluated with early cUS and postrewarming MRI. Validated scoring systems were used to compare the severity of brain injury on cUS and MRI. Neurodevelopmental outcomes were assessed at 18 months of age. RESULTS: Among the 149 included infants, abnormal white matter (WM) and deep gray matter (DGM) hyperechogenicity on cUS in the first 48 hours after birth were more common in the severe HIE group than the mild HIE group (81% vs 39% and 50% vs 0%, respectively; P < .001). In infants with a normal cUS, 95% had normal or mildly abnormal brain MRIs. In infants with severely abnormal cUS, none had normal and 83% had severely abnormal brain MRIs. Total abnormality scores on cUS were higher in neonates with near-total brain injury on MRI than in neonates with normal MRI or WM-predominant injury pattern (adjusted P < .001 for both). In the multivariable model, a severely abnormal MRI was the only independent risk factor for adverse outcomes (OR: 19.9, 95% CI: 4.0-98.1; P < .001). CONCLUSION: The present study shows the complementary utility of cUS in the first 48 hours after birth as a predictive tool for the presence of hypoxic-ischemic injury on brain MRI.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Lactente , Recém-Nascido , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/terapia , Estudos Retrospectivos , Neuroimagem , Hipóxia
4.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491366

RESUMO

Down syndrome (DS), the most common genetic cause of intellectual disability, is associated with lifelong cognitive deficits. However, the mechanisms by which triplication of chromosome 21 genes drive neuroinflammation and cognitive dysfunction are poorly understood. Here, using the Ts65Dn mouse model of DS, we performed an integrated single-nucleus ATAC and RNA-sequencing (snATAC-seq and snRNA-seq) analysis of the adult cortex. We identified cell type-specific transcriptional and chromatin-associated changes in the Ts65Dn cortex, including regulators of neuroinflammation, transcription and translation, myelination, and mitochondrial function. We discovered enrichment of a senescence-associated transcriptional signature in Ts65Dn oligodendrocyte (OL) precursor cells (OPCs) and epigenetic changes consistent with a loss of heterochromatin. We found that senescence is restricted to a subset of OPCs concentrated in deep cortical layers. Treatment of Ts65Dn mice with a senescence-reducing flavonoid rescued cortical OPC proliferation, restored microglial homeostasis, and improved contextual fear memory. Together, these findings suggest that cortical OPC senescence may be an important driver of neuropathology in DS.


Assuntos
Síndrome de Down , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Camundongos Transgênicos , Doenças Neuroinflamatórias , Modelos Animais de Doenças
5.
Neuron ; 111(11): 1776-1794.e10, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028432

RESUMO

Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.


Assuntos
Células Receptoras Sensoriais , Medula Espinal , Células Receptoras Sensoriais/fisiologia , Medula Espinal/fisiologia , Caderinas/genética , Caderinas/metabolismo , Sinapses , Corno Dorsal da Medula Espinal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
Pediatr Surg Int ; 39(1): 22, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449183

RESUMO

Children who require surgery in the newborn period are at risk for long-term neurodevelopmental impairment (NDI). There is growing evidence that surgery during this critical window of neurodevelopment gives rise to an increased risk of brain injury, predisposing to neurodevelopmental challenges including motor delays, learning disabilities, executive function impairments, and behavioral disorders. These impairments can have a significant impact on the quality of life of these children and their families. This review explores the current literature surrounding the effect of neonatal surgery on neurodevelopment, as well as the spectrum of proposed mechanisms that may impact neurodevelopmental outcomes. The goal is to identify modifiable risk factors and patients who may benefit from close neurodevelopmental follow-up and early referral to therapy.


Assuntos
Lesões Encefálicas , Transtornos Mentais , Criança , Recém-Nascido , Humanos , Qualidade de Vida , Encaminhamento e Consulta , Fatores de Risco
7.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36239981

RESUMO

Pregnancy is associated with extraordinary plasticity in the maternal brain. Studies in humans and other mammals suggest extensive structural and functional remodeling of the female brain during and after pregnancy. However, we understand remarkably little about the molecular underpinnings of this natural phenomenon. To gain insight into pregnancy-associated hippocampal plasticity, we performed single nucleus RNA sequencing (snRNA-seq) and snATAC-seq from the mouse hippocampus before, during, and after pregnancy. We identified cell type-specific transcriptional and epigenetic signatures associated with pregnancy and postpartum adaptation. In addition, we analyzed receptor-ligand interactions and transcription factor (TF) motifs that inform hippocampal cell type identity and provide evidence of pregnancy-associated adaption. In total, these data provide a unique resource of coupled transcriptional and epigenetic data across a dynamic time period in the mouse hippocampus and suggest opportunities for functional interrogation of hormone-mediated plasticity.


Assuntos
Genômica , Hipocampo , Animais , Feminino , Hipocampo/metabolismo , Hormônios , Humanos , Ligantes , Mamíferos/metabolismo , Camundongos , Gravidez , RNA Nuclear Pequeno/metabolismo , Fatores de Transcrição/metabolismo
8.
Nat Neurosci ; 25(10): 1353-1365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171426

RESUMO

The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Adulto , Arginina/genética , Arginina/metabolismo , Encéfalo/metabolismo , Glicina , Humanos , RNA Mensageiro/metabolismo
9.
J Neurosci ; 42(12): 2418-2432, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35105673

RESUMO

Repetitive mild traumatic brain injury (mTBI) in children and adolescents leads to acute and chronic neurologic sequelae and is linked to later life neurodegenerative disease. However, the biological mechanisms connecting early life mTBI to neurodegeneration remain unknown. Using an adolescent mouse repetitive closed head injury model that induces progressive cognitive impairment in males and anxiety in females in the absence of overt histopathology, we examined transcriptional and translational changes in neurons isolated from sham and injured brain in the chronic phase after injury. At 14 months, single-nuclei RNA sequencing of cortical brain tissue identified disruption of genes associated with neuronal proteostasis and evidence for disrupted ligand-receptor signaling networks in injured mice. Western blot analysis of isolated neurons showed evidence of inflammasome activation and downstream IL-1ß processing, as previously demonstrated in acute CNS injury models, and accumulation of misfolded, hyperphosphorylated tau, and changes in expression of proteins suggestive of impaired translation in males but not in females. At 6 months, injured IL-1 receptor 1 (IL-1R1) KO mice, which are protected from postinjury cognitive deficits, had decreased accumulation of pro-IL-1ß and misfolded tau in cortex and cerebellum, suggesting that IL-1R1 is upstream of inflammasome priming (defined as increase in pro-IL-1ß) and abnormal tau phosphorylation. Together, our findings provide evidence for neuronal inflammasome activation and impaired proteostasis as key mechanisms linking repetitive mTBI in adolescence to later life neurologic dysfunction and neurodegeneration.SIGNIFICANCE STATEMENT Repetitive mild closed head injury in adolescent male mice leads to impaired proteostasis, tau phosphorylation, and inflammasome activation in neurons later in adulthood through mechanisms involving IL-1 receptor 1. The data are the first to link repetitive mild traumatic brain injury in adolescence to neurodegeneration and suggest molecular targets and pathways to prevent neurologic sequelae in the chronic period after injuries.


Assuntos
Concussão Encefálica , Doenças Neurodegenerativas , Tauopatias , Animais , Concussão Encefálica/complicações , Concussão Encefálica/patologia , Modelos Animais de Doenças , Feminino , Inflamassomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Proteostase , Receptores de Interleucina-1 , Tauopatias/patologia
10.
Pediatr Res ; 91(5): 1017, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149846
11.
Pediatr Res ; 91(5): 1090-1098, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34750520

RESUMO

BACKGROUND: During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. METHODS: We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs) from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls). RESULTS: We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in cases compared to controls. CONCLUSIONS: As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. IMPACT: The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are poorly understood. Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of vertical transmission.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Criança , Feminino , Feto , Humanos , Imunidade , Imunofenotipagem , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Pandemias , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , SARS-CoV-2
13.
Front Cardiovasc Med ; 8: 662870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222363

RESUMO

Background: Right ventricular (RV) performance is a key determinant of mortality in pulmonary arterial hypertension (PAH). RV failure is characterized by metabolic dysregulation with unbalanced anaerobic glycolysis, oxidative phosphorylation, and fatty acid oxidation (FAO). We previously found that acetazolamide (ACTZ) treatment modulates the pulmonary inflammatory response and ameliorates experimental PAH. Objective: To evaluate the effect of ACTZ treatment on RV function and metabolic profile in experimental PAH. Design/Methods: In the Sugen 5416/hypoxia (SuHx) rat model of severe PAH, RV transcriptomic analysis was performed by RNA-seq, and top metabolic targets were validated by RT-PCR. We assessed the effect of therapeutic administration of ACTZ in the drinking water on hemodynamics by catheterization [right and left ventricular systolic pressure (RVSP and LVSP, respectively)] and echocardiography [pulmonary artery acceleration time (PAAT), RV wall thickness in diastole (RVWT), RV end-diastolic diameter (RVEDD), tricuspid annular plane systolic excursion (TAPSE)] and on RV hypertrophy (RVH) by Fulton's index (FI) and RV-to-body weight (BW) ratio (RV/BW). We also examined myocardial histopathology and expression of metabolic markers in RV tissues. Results: There was a distinct transcriptomic signature of RVH in the SuHx model of PAH, with significant downregulation of metabolic enzymes involved in fatty acid transport, beta oxidation, and glucose oxidation compared to controls. Treatment with ACTZ led to a pattern of gene expression suggestive of restored metabolic balance in the RV with significantly increased beta oxidation transcripts. In addition, the FAO transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) was significantly downregulated in untreated SuHx rats compared to controls, and ACTZ treatment restored its expression levels. These metabolic changes were associated with amelioration of the hemodynamic and echocardiographic markers of RVH in the ACTZ-treated SuHx animals and attenuation of cardiomyocyte hypertrophy and RV fibrosis. Conclusion: Acetazolamide treatment prevents the development of PAH, RVH, and fibrosis in the SuHx rat model of severe PAH, improves RV function, and restores the RV metabolic profile.

14.
Brain ; 144(8): 2527-2540, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014281

RESUMO

Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.


Assuntos
Ansiedade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Fenótipo
15.
Res Sq ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33758834

RESUMO

During the COVID-19 pandemic, thousands of pregnant women have been infected with SARS-CoV-2. The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being are unknown. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. We performed single-cell RNA sequencing and T-cell receptor (TCR) sequencing on cord blood mononuclear cells (CBMC) from newborns of mothers infected with SARS-CoV-2 in the third-trimester (cases) or without SARS-CoV-2 infection. We identified widespread gene expression changes in CBMC from cases, including upregulation of interferon-stimulated genes and Major Histocompatibility Complex genes in CD14 + monocytes; transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of NK cells and CD8 + T-cells. Lastly, we observed fetal TCR repertoire expansion in cases. As none of the infants were infected with SARS-CoV-2, our results suggest that SARS-CoV-2 maternal infection might modulate the fetal immune system in the absence of vertical transmission.

16.
J Perinatol ; 41(5): 928-939, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33249428

RESUMO

There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.


Assuntos
Obesidade Materna , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo , Criança , Feminino , Humanos , Inflamação , Obesidade/complicações , Obesidade/epidemiologia , Gravidez
17.
Nat Neurosci ; 24(2): 204-213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361822

RESUMO

Maternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis. Moreover, blockade of ISR activation prevented the behavioral abnormalities as well as increased cortical neural activity in MIA male offspring. Our data suggest that sex-specific activation of the ISR leads to maternal inflammation-associated neurodevelopmental disorders.


Assuntos
Encéfalo/imunologia , Feto/imunologia , Imunidade Inata/genética , Proteostase/genética , Animais , Comportamento Animal , Deficiências do Desenvolvimento/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Biossíntese de Proteínas/genética , Proteoma/biossíntese , RNA/biossíntese , RNA/genética , RNA Interferente Pequeno , Caracteres Sexuais , Transdução de Sinais , Estresse Psicológico/genética , Estresse Psicológico/psicologia
18.
J Am Heart Assoc ; 9(21): e016684, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33076749

RESUMO

Background In a recent multicenter study of perinatal outcome in fetuses with Ebstein anomaly or tricuspid valve dysplasia, we found that one third of live-born patients died before hospital discharge. We sought to further describe postnatal management strategies and to define risk factors for neonatal mortality and circulatory outcome at discharge. Methods and Results This 23-center, retrospective study from 2005 to 2011 included 243 fetuses with Ebstein anomaly or tricuspid valve dysplasia. Among live-born patients, clinical and echocardiographic factors were evaluated for association with neonatal mortality and palliated versus biventricular circulation at discharge. Of 176 live-born patients, 7 received comfort care, 11 died <24 hours after birth, and 4 had insufficient data. Among 154 remaining patients, 38 (25%) did not survive to discharge. Nearly half (46%) underwent intervention. Mortality differed by procedure; no deaths occurred in patients who underwent right ventricular exclusion. At discharge, 56% of the cohort had a biventricular circulation (13% following intervention) and 19% were palliated. Lower tricuspid regurgitation jet velocity (odds ratio [OR], 2.3 [1.1-5.0], 95% CI, per m/s; P=0.025) and lack of antegrade flow across the pulmonary valve (OR, 4.5 [1.3-14.2]; P=0.015) were associated with neonatal mortality by multivariable logistic regression. These variables, along with smaller pulmonary valve dimension, were also associated with a palliated outcome. Conclusions Among neonates with Ebstein anomaly or tricuspid valve dysplasia diagnosed in utero, a variety of management strategies were used across centers, with poor outcomes overall. High-risk patients with low tricuspid regurgitation jet velocity and no antegrade pulmonary blood flow should be considered for right ventricular exclusion to optimize their chance of survival.


Assuntos
Anomalia de Ebstein/mortalidade , Valva Tricúspide/anormalidades , Velocidade do Fluxo Sanguíneo/fisiologia , Anomalia de Ebstein/diagnóstico , Anomalia de Ebstein/terapia , Ecocardiografia , Feminino , Doenças das Valvas Cardíacas/epidemiologia , Mortalidade Hospitalar , Humanos , Recém-Nascido , Modelos Logísticos , Masculino , Mortalidade Perinatal , Diagnóstico Pré-Natal , Estudos Retrospectivos , Fatores de Risco
19.
Proc Natl Acad Sci U S A ; 117(21): 11744-11752, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404418

RESUMO

Auditory experience drives neural circuit refinement during windows of heightened brain plasticity, but little is known about the genetic regulation of this developmental process. The primary auditory cortex (A1) of mice exhibits a critical period for thalamocortical connectivity between postnatal days P12 and P15, during which tone exposure alters the tonotopic topography of A1. We hypothesized that a coordinated, multicellular transcriptional program governs this window for patterning of the auditory cortex. To generate a robust multicellular map of gene expression, we performed droplet-based, single-nucleus RNA sequencing (snRNA-seq) of A1 across three developmental time points (P10, P15, and P20) spanning the tonotopic critical period. We also tone-reared mice (7 kHz pips) during the 3-d critical period and collected A1 at P15 and P20. We identified and profiled both neuronal (glutamatergic and GABAergic) and nonneuronal (oligodendrocytes, microglia, astrocytes, and endothelial) cell types. By comparing normal- and tone-reared mice, we found hundreds of genes across cell types showing altered expression as a result of sensory manipulation during the critical period. Functional voltage-sensitive dye imaging confirmed GABA circuit function determines critical period onset, while Nogo receptor signaling is required for its closure. We further uncovered previously unknown effects of developmental tone exposure on trajectories of gene expression in interneurons, as well as candidate genes that might execute tonotopic plasticity. Our single-nucleus transcriptomic resource of developing auditory cortex is thus a powerful discovery platform with which to identify mediators of tonotopic plasticity.


Assuntos
Córtex Auditivo , Núcleo Celular/metabolismo , RNA , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Camundongos , Receptores Nogo/genética , Receptores Nogo/metabolismo , RNA/análise , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
20.
Neuron ; 99(3): 525-539.e10, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30033152

RESUMO

Sensory experience influences the establishment of neural connectivity through molecular mechanisms that remain unclear. Here, we employ single-nucleus RNA sequencing to investigate the contribution of sensory-driven gene expression to synaptic refinement in the dorsal lateral geniculate nucleus of the thalamus, a region of the brain that processes visual information. We find that visual experience induces the expression of the cytokine receptor Fn14 in excitatory thalamocortical neurons. By combining electrophysiological and structural techniques, we show that Fn14 is dispensable for early phases of refinement mediated by spontaneous activity but that Fn14 is essential for refinement during a later, experience-dependent period of development. Refinement deficits in mice lacking Fn14 are associated with functionally weaker and structurally smaller retinogeniculate inputs, indicating that Fn14 mediates both functional and anatomical rearrangements in response to sensory experience. These findings identify Fn14 as a molecular link between sensory-driven gene expression and vision-sensitive refinement in the brain.


Assuntos
Corpos Geniculados/metabolismo , Células Ganglionares da Retina/metabolismo , Receptor de TWEAK/biossíntese , Percepção Visual/fisiologia , Animais , Feminino , Expressão Gênica , Corpos Geniculados/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Trato Óptico/crescimento & desenvolvimento , Trato Óptico/metabolismo , Retina/metabolismo , Receptor de TWEAK/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...