Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Total Environ ; 924: 171589, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461988

RESUMO

Pharmaceuticals and personal care products (PPCPs) have attracted wide attention due to their environmental impacts and health risks. PPCPs released through wastewater treatment plants (WWTPs) are estimated to be 80 %. Nevertheless, the occurrence of PPCPs in the WWTPs equipped with Bacillus spec.-based bioreactors (BBR) treatment system remains unclear. In this study, sludge and waste water samples were collected during separate winter and summer sampling campaigns from a typical BBR treatment system. The results indicate that out of 58 target PPCPs, 27 compounds were detected in the waste water (0.06-1900 ng/L), and 23 were found in the sludge (0.6-7755 ng/g dw). Paraxanthine was the chemical of the highest abundance in the influent due to the high consumption of the parent compounds caffeine and theobromine. The profile for PPCPs in the wastewater and sludge exhibited no seasonal variation. Overall, the removal of target PPCPs in summer is more effective than the winter. In the BBR bio-reactor, it was found that selected PPCPs (at ng/L level) can be completely removed. The efficiency for individual PPCP removal was increased from 1.0 % to 50 % in this unit, after target specific adjustments of the process. The effective removal of selected PPCPs by the BBR treatment system is explained by combined sorption and biodegradation processing. The re-occurrence of PPCPs in the wastewater was monitored. Negative removal efficiency was explained by the cleavage of Phase II metabolites after the biotransformation process, and the lack of equilibrium for PPCPs in the sludge of the second clarifier. A compound specific risk quotient (RQ) was calculated and applied for studying the potential environmental risks. Diphenhydramine is found with the highest environmental risk in wastewater, and 15 other PPCPs show negligible risks in sewage sludge.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Cosméticos/análise , Purificação da Água/métodos , Preparações Farmacêuticas , Monitoramento Ambiental
2.
Chemosphere ; 351: 141169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211789

RESUMO

The uptake dynamics of two sulfonamide antibiotics, two fluoroquinolone antibiotics, and the anticonvulsant carbamazepine during the cultivation of two species of edible mushrooms (Agaricus subrufescens and A. bisporus) was investigated. None of the antibiotics were accumulated by the mushrooms, while carbamazepine and its transformation product carbamazepine-10,11-epoxide were taken up by A. bisporus fruiting body but only in small amounts (up to 0.76 and 1.85 µg kg-1 dry weight, respectively). The sulfonamides were quickly removed from the mushroom growth substrate, while the recalcitrant fluoroquinolones and carbamazepine were only partially removed. Dissipation half-lives were generally lower for A. subrufescens than A. bisporus, but A. subrufescens was also grown at a slightly higher culture temperature. A. subrufescens also showed a lower uptake of contaminants. Comparison of maximum dietary intake with other common exposure sources showed that these mushrooms can safely be eaten although produced on a polluted substrate, with respect to the investigated compounds.


Assuntos
Antibacterianos , Biocombustíveis , Transporte Biológico , Carbamazepina , Preparações Farmacêuticas
3.
Environ Sci Pollut Res Int ; 31(11): 17524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267647
4.
Chemosphere ; 345: 140463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852382

RESUMO

The environmental distribution of per- and polyfluoroalkyl substances (PFAS) in water, snow, sediment and soil samples taken along the west coast of Spitsbergen in the Svalbard archipelago, Norwegian Arctic, was determined. The contribution of potential local primary sources (wastewater, firefighting training site at Svalbard airport, landfill) to PFAS concentrations and long-range transport (atmosphere, ocean currents) were then compared, based on measured PFAS levels and composition profiles. In remote coastal and inland areas of Spitsbergen, meltwater had the highest mean ΣPFAS concentration (6.5 ± 1.3 ng L-1), followed by surface snow (2.5 ± 1.7 ng L-1), freshwater (2.3 ± 1.1 ng L-1), seawater (1.05 ± 0.64 ng L-1), lake sediments (0.084 ± 0.038 ng g-1 dry weight (dw)) and marine sediments (

Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Svalbard , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Fluorocarbonos/análise , Água , Lagos , Alcanossulfonatos , Regiões Árticas , Solo
5.
Chemosphere ; 327: 138530, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001758

RESUMO

Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: "Act now!" Specifically, "Act now!" to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. •Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. •Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Regiões Antárticas , Regiões Árticas , Clima Frio , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Medição de Risco
6.
Sci Total Environ ; 871: 161830, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716880

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of persistent organic contaminants of which some are toxic and bioaccumulative. Several PFAS can be formed from the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs) as well as hydrochlorofluorocarbons (HFCs) and other ozone-depleting chlorofluorocarbon (CFC) replacement compounds. Svalbard ice cores have been shown to provide a valuable record of long-range atmospheric transport of contaminants to the Arctic. This study uses a 12.3 m ice core from the remote Lomonosovfonna ice cap on Svalbard to understand the atmospheric deposition of PFAS in the Arctic. A total of 45 PFAS were targeted, of which 26 were detected, using supercritical fluid chromatography (SFC) tandem mass spectrometry (MS/MS) and ultra-performance liquid chromatography (UPLC) MS/MS. C2 to C11 perfluoroalkyl carboxylic acids (PFCAs) were detected continuously in the ice core and their fluxes ranged from 2.5 to 8200 ng m-2 yr-1 (9.51-16,500 pg L-1). Trifluoroacetic acid (TFA) represented 71 % of the total mass of C2 - C11 PFCAs in the ice core and had increasing temporal trends in deposition. The distribution profile of PFCAs suggested that FTOHs were likely the atmospheric precursor to C8 - C11 PFCAs, whereas C2 - C6 PFCAs had alternative sources, such as HFCs and other CFC replacement compounds. Perfluorooctanesulfonic acid (PFOS) was also widely detected in 82 % of ice core subsections, and its isomer profile (81 % linear) indicated an electrochemical fluorination manufacturing source. Comparisons of PFAS concentrations with a marine aerosol proxy showed that marine aerosols were insignificant for the deposition of PFAS on Lomonosovfonna. Comparisons with a melt proxy showed that TFA and PFOS were mobile during meltwater percolation. This indicates that seasonal snowmelt and runoff from post-industrial accumulation on glaciers could be a significant seasonal source of PFAS to ecosystems in Arctic fjords.

7.
Environ Sci Ecotechnol ; 14: 100229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36531934

RESUMO

The historical annual loading to, removal from, and cumulative burden in the Arctic Ocean for ß-hexachlorocyclohexane (ß-HCH), an isomer comprising 5-12% of technical HCH, is investigated using a mass balance box model from 1945 to 2020. Over the 76 years, loading occurred predominantly through ocean currents and river inflow (83%) and only a small portion via atmospheric transport (16%). ß-HCH started to accumulate in the Arctic Ocean in the late 1940s, reached a peak of 810 t in 1986, and decreased to 87 t in 2020, when its concentrations in the Arctic water and air were ∼30 ng m-3 and ∼0.02 pg m-3, respectively. Even though ß-HCH and α-HCH (60-70% of technical HCH) are both the isomers of HCHs with almost identical temporal and spatial emission patterns, these two chemicals have shown different major pathways entering the Arctic. Different from α-HCH with the long-range atmospheric transport (LRAT) as its major transport pathway, ß-HCH reached the Arctic mainly through long-range oceanic transport (LROT). The much higher tendency of ß-HCH to partition into the water, mainly due to its much lower Henry's Law Constant than α-HCH, produced an exceptionally strong pathway divergence with ß-HCH favoring slow transport in water and α-HCH favoring rapid transport in air. The concentration and burden of ß-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.

8.
Sci Total Environ ; 851(Pt 1): 158193, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995163

RESUMO

The continual discharge of pharmaceuticals from wastewater treatment plants (WWTPs) into the marine environment, even at concentrations as low as ng/L, can exceed levels that induce sublethal effects to aquatic organisms. Amitriptyline, a tricyclic antidepressant, is the most prescribed antidepressant in Norway, though the presence, potential for transport, and uptake by aquatic biota have not been assessed. To better understand the release and bioaccumulative capacity of amitriptyline, laboratory exposure studies were carried out with field-collected sediments. Influent and effluent composite samples from the WWTP of Stavanger (the 4th largest city in Norway) were taken, and sediment samples were collected in three sites in the proximity of this WWTP discharge at sea (WWTP discharge (IVAR), Boknafjord, and Kvitsøy (reference)). Polychaetes (Nereis virens) were exposed to field-collected sediments, as well as to Kvitsøy sediment spiked with 3 and 30 µg/g amitriptyline for 28 days. The WWTP influent and effluent samples had concentrations of amitriptyline of 4.93 ± 1.40 and 6.24 ± 1.39 ng/L, respectively. Sediment samples collected from IVAR, Boknafjord, and Kvitsøy had concentrations of 6.5 ± 3.9, 15.6 ± 12.7, and 12.7 ± 8.0 ng/g, respectively. Concentrations of amitriptyline were below the limit of detection in polychaetes exposed to sediment collected from Kvitsøy and IVAR, and 5.2 ± 2.8 ng/g in those exposed to Boknafjord sediment. Sediment spiked with 3 and 30 µg/g amitriptyline had measured values of 423.83 ± 33.1 and 763.2 ± 180.5 ng/g, respectively. Concentrations in worms exposed to the amended sediments were 9.5 ± 0.2 and 56.6 ± 2.2 ng/g, respectively. This is the first known study to detect measurable concentrations of amitriptyline in WWTP discharge in Norway and accumulation in polychaetes treated with field-collected sediments, suggesting that amitriptyline has the potential for trophic transfer in marine systems.


Assuntos
Poliquetos , Poluentes Químicos da Água , Amitriptilina , Animais , Antidepressivos Tricíclicos , Bioacumulação , Monitoramento Ambiental , Sedimentos Geológicos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
9.
Environ Sci Pollut Res Int ; 29(57): 86595-86605, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35796924

RESUMO

Farms utilizing sewage sludge and manure in their agronomic plant production are recognized as potential hotspots for environmental release of antibiotics and the resulting promotion of antibiotic resistance. As part of the circular economy, the use of biogas digestates for soil fertilizing is steadily increasing, but their potential contribution to the spreading of pharmaceutical residues is largely unknown. Digestates can be produced from a variety of biowaste resources, including sewage sludge, manure, food waste, and fish ensilage. We developed a method for the detection of 17 antibiotics and 2 steroid hormones and applied the method to detect pharmaceutical residues in digestates from most municipal biogas plants in Norway, covering a variety of feedstocks. The detection frequency and measured levels were overall low for most compounds, except a few incidents which cause concern. Specifically, relatively high levels of amoxicillin, penicillin G, ciprofloxacin, and prednisolone were detected in different digestates. Further, ipronidazole was detected in four digestates, although no commercial pharmaceutical products containing ipronidazole are currently registered in Norway. A simplified risk assessment showed a high risk for soil microorganisms and indicates the tendency for antibiotic-resistant bacteria for penicillin G and amoxicillin. For prednisolone and ipronidazole; however, no toxicity data is available for reliable risk assessments.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Animais , Biocombustíveis/microbiologia , Esterco/microbiologia , Esgotos/química , Antibacterianos , Alimentos , Ipronidazol , Solo/química , Esteroides , Amoxicilina , Prednisolona , Preparações Farmacêuticas , Anaerobiose
10.
Water Res ; 217: 118439, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452973

RESUMO

The global oceans are known as terminal sink or secondary source for diffusive emission of organochlorine pesticides (OCPs) and selected current used pesticides (CUPs) into the overlaying atmosphere. Many pesticides have been widely produced worldwide, subsequently applied, and released into the environment. However, information on the occurrence patterns, spatial variability, and air-seawater exchange of pesticides is limited to easily accessible regions and, hence, only few studies are reported from the remote Southern Ocean. To fill this information gap, a large-scale ship-based sampling campaign was conducted. In the samples from this campaign, we measured concentrations of 221 pesticides. Both gaseous and aqueous samples were collected along a sampling transect from the western Pacific to the Southern Ocean (19.75° N-76.16° S) from November 2018 to March 2019. Twenty-seven individual pesticides were frequently (≥ 50%) detected in gaseous and aqueous samples. Tebuconazole, diphenylamine, myclobutanil, and hexachlorobenzene (HCB) dominated the composition profile in both phases. Spatial trends analysis in atmospheric and seawater concentrations showed a substantial level reduction from the western Pacific towards the Southern Ocean. Back-trajectory analysis showed that atmospheric pesticide concentrations were strongly influenced by air masses origins. Continental and riverine inputs are important sources of pesticides in the western Pacific and Indian Oceans. Atmospheric and seawater concentrations for the target pesticide residues in the Southern Ocean are low and evenly distributed due to the large distance from potential pollution sources as well as the effective isolation by the Antarctic Convergence (AC). Air-seawater fugacity ratios and fluxes indicated that the western Pacific and Indian Oceans were secondary sources for most pesticides emitted to the atmosphere, while the Southern Ocean was still considered to be a sink.


Assuntos
Poluentes Atmosféricos , Praguicidas , Poluentes Atmosféricos/análise , Atmosfera/análise , Monitoramento Ambiental , Gases , Oceano Índico , Oceano Pacífico , Praguicidas/análise , Água do Mar/química , Água/análise
11.
Environ Sci Technol ; 56(10): 6253-6261, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476391

RESUMO

The spatial variability of polycyclic aromatic hydrocarbons (PAHs) in the marine atmosphere contributes to the understanding of the global sources, fate, and impact of this contaminant. Few studies conducted to measure PAHs in the oceanic atmosphere have covered a large scale, especially in the Southern Ocean. In this study, high-volume air samples were taken along a cross-section from China to Antarctica and analyzed for gaseous and particulate PAHs. The data revealed the spatial distribution, gas-particle partitioning, and source contributions of PAHs in the Pacific, Indian, and Southern Oceans. The median concentration (gaseous + particulate) of ∑24PAHs was 3900 pg/m3 in the Pacific Ocean, 2000 pg/m3 in the Indian Ocean, and 1200 pg/m3 in the Southern Ocean. A clear latitudinal gradient was observed for airborne PAHs from the western Pacific to the Southern Ocean. Back trajectories (BTs) analysis showed that air masses predominantly originated from populated land had significantly higher concentrations of PAHs than those from the oceans or Antarctic continents/islands. The air mass origins and temperature have significant influences on the gas-particle partitioning of PAHs. Source analysis by positive matrix factorization (PMF) showed that the highest contribution to PAHs was from coal combustion emissions (52%), followed by engine combustion emissions (27%) and wood combustion emissions (21%). A higher contribution of PAHs from wood combustion was found in the eastern coastal region of Australia. In contrast, engine combustion emissions primarily influenced the sites in Southeast Asia.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Atmosfera , China , Carvão Mineral , Monitoramento Ambiental , Gases , Oceano Índico , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
12.
Environ Sci Process Impacts ; 24(10): 1577-1615, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35244108

RESUMO

Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.


Assuntos
Produtos Biológicos , Poluentes Ambientais , Humanos , Mudança Climática , Poluentes Orgânicos Persistentes , Ecossistema , Poluentes Ambientais/análise , Microplásticos , Plásticos , Regiões Árticas
13.
Environ Sci Technol ; 55(23): 15853-15861, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779623

RESUMO

C1-C4 perfluoroalkyl acids (PFAAs) are highly persistent chemicals that have been found in the environment. To date, much uncertainty still exists about their sources and fate. The importance of the atmospheric degradation of volatile precursors to C1-C4 PFAAs were investigated by studying their distribution and seasonal variation in remote Arctic locations. C1-C4 PFAAs were measured in surface snow on the island of Spitsbergen in the Norwegian Arctic during January-August 2019. Trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), perfluorobutanoic acid (PFBA), and trifluoromethane sulfonic acid (TFMS) were detected in most samples, including samples collected at locations presumably receiving PFAA input solely from long-range processes. The flux of TFA, PFPrA, PFBA, and TFMS per precipitation event was in the ranges of 22-1800, 0.79-16, 0.19-170, and 1.5-57 ng/m2, respectively. A positive correlation between the flux of TFA, PFPrA, and PFBA with downward short-wave solar radiation was observed. No correlation was observed between the flux of TFMS and solar radiation. These findings suggest that atmospheric transport of volatile precursors and their subsequent degradation plays a major role in the global distribution of C2-C4 perfluoroalkyl carboxylic acids and their consequential deposition in Arctic environments. The discovery of TFMS in surface snow at these remote Arctic locations suggests that TFMS is globally distributed. However, the transport mechanism to the Arctic environment remains unknown.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Clorofluorcarbonetos de Metano , Monitoramento Ambiental , Fluorocarbonos/análise , Estações do Ano , Neve , Ácidos Sulfônicos/análise , Poluentes Químicos da Água/análise
14.
Water Res ; 207: 117780, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731661

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) as a group of toxic and carcinogenic compounds are large scale globally emitted anthropogenic pollutants mainly emitted into the atmosphere. However, atmospheric transport cannot fully explain the spatial variability of PAHs in the marine atmosphere and seawater. It is hypothesized that PAHs accumulated in seawater and ocean circulation can also influence PAHs observed in air above the ocean. In order to investigate PAHs in seawater as a potential secondary source to air, we collected paired air and seawater samples during a research cruise from China to the Antarctic in 2018-2019, covering the Pacific Ocean, the Indian Ocean, and the Southern Ocean. Summed concentrations of 28 analyzed PAHs in seawater were highest in the Pacific Ocean (4000 ± 1400 pg/L), followed by the Indian Ocean (2700 ± 1000 pg/L), and the Southern Ocean (2300 ± 520 pg/L). Three-ringed PAHs dominated the composition profile. We found that PAH levels in the Pacific and Indian Oceans were strong inversely correlated with salinity and distance to the coastline. This suggests that riverine inputs and continental discharges are important sources of PAHs to the marine environment. Derived air-seawater fugacity ratios suggest that net fluxes of PAHs were from seawater to the air in the Pacific and Indian Oceans at 9.0-8100 (median: 1600) ng/m2/d and 290-2000 (median: 1300) ng/m2/d, respectively. In the Southern Ocean, the net flow of PAHs was from air to seawater with a flux of -1000-450 (median: -82) ng/m2/d. Source apportionment from two different models suggested that the largest contribution to total PAHs was from petrogenic sources (44-57%), followed by coal/wood combustion (30-31%), fossil fuel combustion (15%), and engine combustion emissions (2.8-9.5%). Higher contributions from petrogenic sources were found at sites close to coastal regions. Both coal/wood combustion and petrogenic sources are responsible for the PAH concentrations detected in the Indian and Southern Oceans.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Oceano Índico , Oceano Pacífico , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar
16.
Environ Res ; 198: 111291, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965391

RESUMO

Substituted diphenylamine antioxidants (SDPAs) are additives used in various commodities and are commonly found in environmental samples. However, limited information was available on their fate and removal in wastewater treatment plants (WWTPs). This paper reports the results on the occurrence and removal efficiency of ten selected SDPAs in six WWTPs equipped with different treatment processes in Northeast China. Quite similar distributions of different SDPA congeners were shown in the studied WWTPs, with ditertoctyl-diphenylamine (C8/C8-DPA), tertbutyl-tertoctyl-diphenylamine (C4/C8-DPA), and tertoctyl-diphenylamine (C8-DPA) being always dominant in the influent, effluent, and sludge (total > 80%). A cyclic activated sludge system combined with a V-shape filter achieved the highest removal efficiencies of SDPAs among various treatment processes. Styrenated-diphenylamine1 (S-DPA1) (96 ± 10%), C8-DPA (95 ± 5.5%), and distyrenated-diphenylamine1 (DS-DPA1) (94 ± 9.3%) showed high and stable removal efficiencies, whereas C4/C8-DPA (85 ± 31%) and C8/C8-DPA (84 ± 62%) showed considerably varied removal efficiencies. Per-day discharges of SDPAs to the receiving environment through effluent and sludge were estimated as 828 ± 350 and 5578 ± 5196 mg, respectively. A median of 85% of the initial mass loadings of SDPAs was found in the sludge samples, suggesting that the observed removal of SDPAs in the WWTPs was caused by their sorption to the sludge, rather than biodegradation/transformation. This work provides an overall description of the occurrence, fate, and mass balance of SDPAs in WWTPs in Northeast China and highlights a new emission route to the environment via WWTPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antioxidantes/análise , China , Difenilamina , Monitoramento Ambiental , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
17.
Toxics ; 9(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918398

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal efficiency of these compounds through the WWTPs, as well as their source appointment and potential risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01-8.91, 23.0-102, and 6.21-171 µg/L in the influent, and 0.17-1.37, 0.06-0.41 and 0.01-2.41 µg/L in the effluent, respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared with the monitoring data. Overall, the ranges of REs were 55.3-95.4% predicated by the Simple Treat and 47.5-97.7% by the meta-regression. The results by diagnostic ratios and principal component analysis PCA showed that "mixed source" biomass, coal composition, and petroleum could be recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the effluent of WWTPs, to which attention should be paid.

19.
Environ Sci Pollut Res Int ; 28(45): 63945-63964, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33666847

RESUMO

On-site small-scale sanitation is common in rural areas and areas without infrastructure, but the treatment of the collected fecal matter can be inefficient and is seldom directed to resource recovery. The aim of this study was to compare low-technology solutions such as composting and lactic acid fermentation (LAF) followed by vermicomposting in terms of treatment efficiency, potential human and environmental risks, and stabilization of the material for reuse in agriculture. A specific and novel focus of the study was the fate of native pharmaceutical compounds in the fecal matter. Composting, with and without the addition of biochar, was monitored by temperature and CO2 production and compared with LAF. All treatments were run at three different ambient temperatures (7, 20, and 38°C) and followed by vermicomposting at room temperature. Materials resulting from composting and LAF were analyzed for fecal indicators, physicochemical characteristics, and residues of ten commonly used pharmaceuticals and compared to the initial substrate. Vermicomposting was used as secondary treatment and assessed by enumeration of Escherichia coli, worm density, and physicochemical characteristics. Composting at 38°C induced the highest microbial activity and resulted in better stability of the treated material, higher N content, lower numbers of fecal indicators, and less pharmaceutical compounds as compared to LAF. Even though analysis of pH after LAF suggested incomplete fermentation, E. coli cell numbers were significantly lower in all LAF treatments compared to composting at 7°C, and some of the anionic pharmaceutical compounds were detected in lower concentrations. The addition of approximately 5 vol % biochar to the composting did not yield significant differences in measured parameters. Vermicomposting further stabilized the material, and the treatments previously composted at 7°C and 20°C had the highest worm density. These results suggest that in small-scale decentralized sanitary facilities, the ambient temperatures can significantly influence the treatment and the options for safe reuse of the material.


Assuntos
Compostagem , Solo , Agricultura , Escherichia coli , Fezes , Humanos
20.
Environ Sci Process Impacts ; 23(4): 588-604, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33704290

RESUMO

Although poly- and perfluorinated alkyl substances (PFAS) are ubiquitous in the Arctic, their sources and fate in Arctic marine environments remain unclear. Herein, abiotic media (water, snow, and sediment) and biotic media (plankton, benthic organisms, fish, crab, and glaucous gull) were sampled to study PFAS uptake and fate in the marine food web of an Arctic Fjord in the vicinity of Longyearbyen (Svalbard, Norwegian Arctic). Samples were collected from locations impacted by a firefighting training site (FFTS) and a landfill as well as from a reference site. Mean concentration in the landfill leachate was 643 ± 84 ng L-1, while it was 365 ± 8.0 ng L-1 in a freshwater pond and 57 ± 4.0 ng L-1 in a creek in the vicinity of the FFTS. These levels were an order of magnitude higher than in coastal seawater of the nearby fjord (maximum level , at the FFTS impacted site). PFOS was the most predominant compound in all seawater samples and in freshly fallen snow (63-93% of ). In freshwater samples from the Longyear river and the reference site, PFCA ≤ C9 were the predominant PFAS (37-59%), indicating that both local point sources and diffuse sources contributed to the exposure of the marine food web in the fjord. concentrations increased from zooplankton (1.1 ± 0.32 µg kg-1 ww) to polychaete (2.8 ± 0.80 µg kg-1 ww), crab (2.9 ± 0.70 µg kg-1 ww whole-body), fish liver (5.4 ± 0.87 µg kg-1 ww), and gull liver (62.2 ± 11.2 µg kg-1). PFAS profiles changed with increasing trophic level from a large contribution of 6:2 FTS, FOSA and long-chained PFCA in zooplankton and polychaetes to being dominated by linear PFOS in fish and gull liver. The PFOS isomer profile (branched versus linear) in the active FFTS and landfill was similar to historical ECF PFOS. A similar isomer profile was observed in seawater, indicating major contribution from local sources. However, a PFOS isomer profile enriched by the linear isomer was observed in other media (sediment and biota). Substitutes for PFOS, namely 6:2 FTS and PFBS, showed bioaccumulation potential in marine invertebrates. However, these compounds were not found in organisms at higher trophic levels.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Regiões Árticas , Monitoramento Ambiental , Fluorocarbonos/análise , Cadeia Alimentar , Noruega , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...