Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(11): 1739-1753, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105195

RESUMO

Transposable elements (TEs) comprise a significant part of eukaryotic genomes being a major source of genome instability and mutagenesis. Cellular defense systems suppress the TE expansion at all stages of their life cycle. Piwi proteins and Piwi-interacting RNAs (piRNAs) are key elements of the anti-transposon defense system, which control TE activity in metazoan gonads preventing inheritable transpositions and developmental defects. In this review, we discuss various regulatory mechanisms by which small RNAs combat TE activity. However, active transposons persist, suggesting these powerful anti-transposon defense mechanisms have a limited capacity. A growing body of evidence suggests that increased TE activity coincides with genome reprogramming and telomere lengthening in different species. In the Drosophila fruit fly, whose telomeres consist only of retrotransposons, a piRNA-mediated mechanism is required for telomere maintenance and their length control. Therefore, the efficacy of protective mechanisms must be finely balanced in order not only to suppress the activity of transposons, but also to maintain the proper length and stability of telomeres. Structural and functional relationship between the telomere homeostasis and LINE1 retrotransposon in human cells indicates a close link between selfish TEs and the vital structure of the genome, telomere. This relationship, which permits the retention of active TEs in the genome, is reportedly a legacy of the retrotransposon origin of telomeres. The maintenance of telomeres and the execution of other crucial roles that TEs acquired during the process of their domestication in the genome serve as a type of payment for such a "service."


Assuntos
Proteínas de Drosophila , Retroelementos , Animais , Humanos , Drosophila melanogaster/genética , RNA Interferente Pequeno/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Telômero/genética , Telômero/metabolismo , Elementos de DNA Transponíveis
2.
Biochemistry (Mosc) ; 88(11): 1683-1691, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105190

RESUMO

In this article, we commemorate the life and scientific journey of the brilliant gerontologist-theorist Alexey Olovnikov (1936-2022). In 1971, he published his famous "marginotomy" hypothesis, in which he predicted the replicative shortening of telomeres and its role as a counter of cell divisions and biological age of an organism. This work put forth several remarkable assumptions, including the existence of telomerase, which were confirmed two decades later. Despite this, Alexey Olovnikov moved further in his theoretical studies of aging and proposed a series of new hypotheses that seem no less exotic than the marginotomy hypothesis once appeared. Alexey Olovnikov had an extraordinary way of looking at biological problems and, in addition to aging, authored striking concepts about development, biorhythms, and evolution.


Assuntos
Senescência Celular , Telomerase , Masculino , Humanos , Telômero/metabolismo , Divisão Celular , Replicação do DNA , Telomerase/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958962

RESUMO

The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.


Assuntos
RNA , Homeostase do Telômero , Animais , RNA/metabolismo , Drosophila/genética , Envelhecimento/genética , Telômero/genética , Instabilidade Genômica
4.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317951

RESUMO

Insulators are architectural elements implicated in the organization of higher-order chromatin structures and transcriptional regulation. However, it is still unknown how insulators contribute to Drosophila telomere maintenance. Although the Drosophila telomeric retrotransposons HeT-A and TART occupy a common genomic niche, they are regulated independently. TART elements are believed to provide reverse transcriptase activity, whereas HeT-A transcripts serve as a template for telomere elongation. Here, we report that insulator complexes associate with TART and contribute to its transcriptional regulation in the Drosophila germline. Chromatin immunoprecipitation revealed that the insulator complex containing BEAF32, Chriz, and DREF proteins occupy the TART promoter. BEAF32 depletion causes derepression and chromatin changes at TART in ovaries. Moreover, an expansion of TART copy number was observed in the genome of the BEAF32 mutant strain. BEAF32 localizes between the TART enhancer and promoter, suggesting that it blocks enhancer-promoter interactions. Our study found that TART repression is released in the germ cysts as a result of the normal reduction of BEAF32 expression at this developmental stage. We suggest that coordinated expression of telomeric repeats during development underlies telomere elongation control.


Assuntos
Drosophila , Retroelementos , Animais , Drosophila/genética , Retroelementos/genética , Telômero/genética , Cromatina , Células Germinativas
5.
Methods Mol Biol ; 2509: 157-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796963

RESUMO

The RNA fluorescence in situ hybridization (FISH) technique combined with immunostaining is a powerful method to visualize a specific transcript and a protein of interest simultaneously. Although whole-mount RNA FISH is routinely used to determine RNA intracellular localization, a detailed picture of RNA distribution in complex tissues remains a challenge. The main problem is the various permeability of morphologically different cells within a tissue. We overcome this challenge by developing an approach based on differential permeabilization treatment of tissue specimens. We have tested and optimized conditions for RNA FISH combined with immunofluorescent staining (RNA FISH/IF) to detect the maternal telomeric retrotransposon HeT-A RNPs in the Drosophila ovaries and syncytial embryos. Methods described here are applicable to a broad variety of biological tissue specimens.


Assuntos
Drosophila , RNA , Animais , Drosophila/genética , Drosophila/metabolismo , Imunofluorescência , Células Germinativas/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA/genética , Ribonucleoproteínas/genética
6.
Biochemistry (Mosc) ; 87(12): 1600-1610, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717449

RESUMO

Chromatin spatial organization in the nucleus is essential for the genome functioning and regulation of gene activity. The nuclear lamina and lamina-associated proteins, lamins, play a key role in this process. Lamin dysfunction leads to the decompaction and transcriptional activation of heterochromatin, which is associated with the premature aging syndrome. In many cell types, telomeres are located at the nuclear periphery, where their replication and stability are ensured by the nuclear lamina. Moreover, diseases associated with defects in lamins and telomeres have similar manifestations and resemble physiological aging. Understanding molecular changes associated with aging at the organismal level is especially important. In this study, we compared the effects caused by the mutation in lamin B and physiological aging in the germline of the model organism Drosophila melanogaster. We have shown that the impaired localization of lamin B leads to the heterochromatin decompaction and transcriptional activation of some transposable elements and telomeric repeats. Both DNA damage and activation of homologous recombination in the telomeres were observed in the germ cells of lamin B mutants. The instability of repeat-enriched heterochromatin can be directly related to the genome destabilization, germ cell death, and sterility observed in lamin B mutants. Similar processes were observed in Drosophila germline in the course of physiological aging, which indicates a close link between the maintenance of the heterochromatin stability at the nuclear periphery and mechanisms of aging.


Assuntos
Drosophila , Lamina Tipo B , Animais , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Drosophila/genética , Heterocromatina , Drosophila melanogaster/genética , Envelhecimento/genética , Telômero/genética , Telômero/metabolismo , Células Germinativas
7.
Cells ; 12(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36611903

RESUMO

DNA methylation, histone posttranslational modifications, higher-order chromatin organization and regulation by noncoding RNAs are considered as the basic mechanisms underlying the epigenetic memory [...].


Assuntos
Epigênese Genética , Histonas , Histonas/metabolismo , Metilação de DNA/genética , Código das Histonas , Processamento de Proteína Pós-Traducional
8.
PLoS One ; 16(10): e0258156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34624021

RESUMO

Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.


Assuntos
Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Oogênese , Proteínas Serina-Treonina Quinases/metabolismo , Telômero/metabolismo , Animais , Morte Celular , Centríolos/metabolismo , Embrião não Mamífero/metabolismo , Mitose , Ligação Proteica , RNA/metabolismo , Retroelementos/genética , Ribonucleoproteínas/metabolismo , Zigoto/metabolismo
9.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290057

RESUMO

Transgenes containing a fragment of the I retrotransposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in the wild-type context, the endogenous ancestral I-related piRNAs heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. Here, we address how the quantitative level of piRNAs influences the heterochromatinization and piRNA production. We show that a minimal amount of maternal piRNAs from ancestral I-elements is sufficient to form the transgenic piRNA clusters. Supplemental piRNAs stemming from active I-element copies do not stimulate additional chromatin changes or piRNA production from transgenes. Therefore, chromatin changes and piRNA production are initiated by a minimum threshold level of complementary piRNAs, suggesting a selective advantage of prompt cell response to the lowest level of piRNAs. It is noteworthy that the weak piRNA clusters do not transform into strong ones after being targeted by abundant I-specific piRNAs, indicating the importance of the genomic context for piRNA cluster establishment. Analysis of ovarian transcription profiles suggests that regions facilitating convergent transcription favor the formation of transgenic piRNA clusters.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA/biossíntese , RNA/genética , Animais , Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Epigênese Genética , Células Germinativas , Heterocromatina/genética , Heterocromatina/metabolismo , RNA/metabolismo , Retroelementos , Transgenes
10.
Nucleic Acids Res ; 48(1): 141-156, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31724732

RESUMO

Ccr4-Not is a highly conserved complex involved in cotranscriptional RNA surveillance pathways in yeast. In Drosophila, Ccr4-Not is linked to the translational repression of miRNA targets and the posttranscriptional control of maternal mRNAs during oogenesis and embryonic development. Here, we describe a new role for the Ccr4-Not complex in nuclear RNA metabolism in the Drosophila germline. Ccr4 depletion results in the accumulation of transposable and telomeric repeat transcripts in the fraction of chromatin-associated RNA; however, it does not affect small RNA levels or the heterochromatin state of the target loci. Nuclear targets of Ccr4 mainly comprise active full-length transposable elements (TEs) and telomeric and subtelomeric repeats. Moreover, Ccr4-Not foci localize at telomeres in a Piwi-dependent manner, suggesting a functional relationship between these pathways. Indeed, we detected interactions between the components of the Ccr4-Not complex and piRNA machinery, which indicates that these pathways cooperate in the nucleus to recognize and degrade TE transcripts at transcription sites. These data reveal a new layer of transposon control in the germline, which is critical for the maintenance of genome integrity.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endopeptidases/genética , Genoma de Inseto , Óvulo/metabolismo , RNA Mensageiro/genética , Ribonucleases/genética , Animais , Cromatina/química , Cromatina/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário , Endopeptidases/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Óvulo/citologia , Óvulo/crescimento & desenvolvimento , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonucleases/metabolismo , Telômero/química , Telômero/metabolismo
11.
Genes (Basel) ; 10(3)2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862119

RESUMO

Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. TEs harbour various regulatory elements that could affect piRNA cluster integrity. One of such elements is the suppressor-of-hairy-wing (Su(Hw))-mediated insulator, which is harboured in the retrotransposon gypsy. To understand how insulators contribute to piRNA cluster activity, we studied the effects of transgenes containing gypsy insulators on local organization of endogenous piRNA clusters. We show that transgene insertions interfere with piRNA precursor transcription, small RNA production and the formation of piRNA cluster-specific chromatin, a hallmark of which is Rhino, the germline homolog of the heterochromatin protein 1 (HP1). The mutations of Su(Hw) restored the integrity of piRNA clusters in transgenic strains. Surprisingly, Su(Hw) depletion enhanced the production of piRNAs by the domesticated telomeric retrotransposon TART, indicating that Su(Hw)-dependent elements protect TART transcripts from piRNA processing machinery in telomeres. A genome-wide analysis revealed that Su(Hw)-binding sites are depleted in endogenous germline piRNA clusters, suggesting that their functional integrity is under strict evolutionary constraints.


Assuntos
Células Germinativas/metabolismo , Elementos Isolantes , RNA Interferente Pequeno/genética , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retroelementos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
PLoS One ; 13(8): e0201787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157274

RESUMO

The study of the telomeric complex in oogenesis and early development is important for understanding the mechanisms which maintain genome integrity. Telomeric transcripts are the key components of the telomeric complex and are essential for regulation of telomere function. We study the biogenesis of transcripts generated by the major Drosophila telomere repeat HeT-A in oogenesis and early development with disrupted telomeric repeat silencing. In wild type ovaries, HeT-A expression is downregulated by the Piwi-interacting RNAs (piRNAs). By repressing piRNA pathway, we show that overexpressed HeT-A transcripts interact with their product, RNA-binding protein Gag-HeT-A, forming ribonucleoprotein particles (RNPs) during oogenesis and early embryonic development. Moreover, during early stages of oogenesis, in the nuclei of dividing cystoblasts, HeT-A RNP form spherical structures, which supposedly represent the retrotransposition complexes participating in telomere elongation. During the later stages of oogenesis, abundant HeT-A RNP are detected in the cytoplasm and nuclei of the nurse cells, as well as in the cytoplasm of the oocyte. Further on, we demonstrate that HeT-A products co-localize with the transporter protein Egalitarian (Egl) both in wild type ovaries and upon piRNA loss. This finding suggests a role of Egl in the transportation of the HeT-A RNP to the oocyte using a dynein motor. Following germline piRNA depletion, abundant maternal HeT-A RNP interacts with Egl resulting in ectopic accumulation of Egl close to the centrosomes during the syncytial stage of embryogenesis. Given the essential role of Egl in the proper localization of numerous patterning mRNAs, we suggest that its abnormal localization likely leads to impaired embryonic axis specification typical for piRNA pathway mutants.


Assuntos
Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário , Produtos do Gene gag/metabolismo , Oogênese , Retroelementos , Animais , Animais Geneticamente Modificados , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ovário/citologia , Ovário/metabolismo , Óvulo/citologia , Óvulo/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Telômero/metabolismo
13.
Epigenetics Chromatin ; 11(1): 40, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001204

RESUMO

BACKGROUND: Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS: To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS: piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.


Assuntos
Núcleo Celular/genética , RNA Interferente Pequeno/metabolismo , Telômero/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , Drosophila melanogaster , Células Germinativas/química
14.
Curr Opin Genet Dev ; 49: 56-62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29571043

RESUMO

The ends of linear eukaryotic chromosomes, telomeres, are elongated by reverse transcriptase activity provided by the enzyme telomerase, or by specialized telomeric retrotransposons. Telomerase and telomeric retrotransposons represent unique examples of structurally different, but evolutionary and functionally related machineries that generate essential chromosome structures, namely telomeres. In fact, the telomere is an example of the taming of retroelements for the maintenance of essential genome function. Many features of telomere homeostasis are conserved between telomerase and retrotransposon maintained telomeres. The retrotransposon origin of telomeres suggests that mechanisms of transposon control could be adopted for telomere regulation. The discovery of the role of Drosophila telomeric piRNAs in telomere length control and the influence of LINE-1 retroelements on telomere regulation in human cells strongly support this idea and allow us to look at telomere regulation from a new angle.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Retroelementos/genética , Telômero/genética , Animais , Drosophila melanogaster/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , RNA Interferente Pequeno/genética , DNA Polimerase Dirigida por RNA/genética , Telomerase/genética
15.
RNA ; 24(4): 574-584, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358235

RESUMO

Expression of transposable elements in the germline is controlled by Piwi-interacting (pi) RNAs produced by genomic loci termed piRNA clusters and associated with Rhino, a heterochromatin protein 1 (HP1) homolog. Previously, we have shown that transgenes containing a fragment of the I retrotransposon form de novo piRNA clusters in the Drosophila germline providing suppression of I-element activity. We noted that identical transgenes located in different genomic sites vary considerably in piRNA production and classified them as "strong" and "weak" piRNA clusters. Here, we investigated what chromatin and transcriptional changes occur at the transgene insertion sites after their conversion into piRNA clusters. We found that the formation of a transgenic piRNA cluster is accompanied by activation of transcription from both genomic strands that likely initiates at multiple random sites. The chromatin of all transgene-associated piRNA clusters contain high levels of trimethylated lysine 9 of histone H3 (H3K9me3) and HP1a, whereas Rhino binding is considerably higher at the strong clusters. None of these chromatin marks was revealed at the "empty" sites before transgene insertion. Finally, we have shown that in the nucleus of polyploid nurse cells, the formation of a piRNA cluster at a given transgenic genomic copy works according to an "all-or-nothing" model: either there is high Rhino enrichment or there is no association with Rhino at all. As a result, genomic copies of a weak piRNA transgenic cluster show a mosaic association with Rhino foci, while the majority of strong transgene copies associate with Rhino and are hence involved in piRNA production.


Assuntos
Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Transcrição Gênica/genética , Animais , Animais Geneticamente Modificados , Homólogo 5 da Proteína Cromobox , Feminino , Histonas/metabolismo , Metilação , Ligação Proteica , Retroelementos/genética , Ativação Transcricional/genética , Transgenes/genética
16.
PLoS Genet ; 13(4): e1006731, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28448516

RESUMO

In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon HeT-A, which we have observed in one particular transposon-resistant R strain.


Assuntos
Proteínas Cromossômicas não Histona/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , RNA Interferente Pequeno/genética , Telômero/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/imunologia , Proteínas Cromossômicas não Histona/metabolismo , Elementos de DNA Transponíveis/imunologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Inativação Gênica , Genoma de Inseto , Células Germinativas , Heterocromatina/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/imunologia , Telômero/imunologia
17.
J Mol Biol ; 429(21): 3280-3289, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27939293

RESUMO

PIWI-interacting RNAs (piRNAs) provide the silencing of transposable elements in the germline. Drosophila telomeres are maintained by transpositions of specialized telomeric retroelements. piRNAs generated from sense and antisense transcripts of telomeric elements provide telomere length control in the germline. Previously, we have found that antisense transcription of the major telomeric retroelement HeT-A is initiated upstream of the HeT-A sense transcription start site. Here, we performed a deletion analysis of the HeT-A promoter and show that common regulatory elements are shared by sense and antisense promoters of HeT-A. Therefore, the HeT-A promoter is a bidirectional promoter capable of processive sense and antisense transcription. Ovarian small RNA data show that a solo HeT-A promoter within an euchromatic transgene initiates the divergent transcription of transgenic reporter genes and subsequent processing of these transcripts into piRNAs. These events lead to the formation of a divergent unistrand piRNA cluster at solo HeT-A promoters, in contrast to endogenous telomeres that represent strong dual-strand piRNA clusters. Solo HeT-A promoters are not immunoprecipitated with heterochromatin protein 1 (HP1) homolog Rhino, a marker of the dual-strand piRNA clusters, but are associated with HP1 itself, which provides piRNA-mediated transcriptional repression of the reporter genes. Unlike endogenous dual-strand piRNA clusters, the solo HeT-A promoter does not produce overlapping transcripts. In a telomeric context, however, bidirectional promoters of tandem HeT-A repeats provide a read-through transcription of both genomic strands, followed by Rhi binding. These data indicate that Drosophila telomeres share properties of unistrand and dual-strand piRNA clusters.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regiões Promotoras Genéticas/genética , Precursores de RNA/genética , RNA Interferente Pequeno/genética , Retroelementos/genética , Telômero/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Células Germinativas , Telômero/metabolismo , Transcrição Gênica
19.
Nucleic Acids Res ; 43(18): 8762-73, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26240377

RESUMO

The germline-specific role of telomeres consists of chromosome end elongation and proper chromosome segregation during early developmental stages. Despite the crucial role of telomeres in germ cells, little is known about telomere biology in the germline. We analyzed telomere homeostasis in the Drosophila female germline and early embryos. A novel germline-specific function of deadenylase complex Ccr4-Not in the telomeric transcript surveillance mechanism is reported. Depletion of Ccr4-Not complex components causes strong derepression of the telomeric retroelement HeT-A in the germ cells, accompanied by elongation of the HeT-A poly(A) tail. Dysfunction of transcription factors Woc and Trf2, as well as RNA-binding protein Ars2, also results in the accumulation of excessively polyadenylated HeT-A transcripts in ovaries. Germline knockdowns of Ccr4-Not components, Woc, Trf2 and Ars2, lead to abnormal mitosis in early embryos, characterized by chromosome missegregation, centrosome dysfunction and spindle multipolarity. Moreover, the observed phenotype is accompanied by the accumulation of HeT-A transcripts around the centrosomes in early embryos, suggesting the putative relationship between overexpression of telomeric transcripts and mitotic defects. Our data demonstrate that Ccr4-Not, Woc, Trf2 and Ars2, components of different regulatory pathways, are required for telomere protection in the germline in order to guarantee normal development.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Retroelementos , Telômero , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Mitose/genética , Ovário/metabolismo , Óvulo/metabolismo , Poliadenilação , Proteínas de Ligação a RNA , Ribonucleases/genética , Ribonucleases/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
PLoS Genet ; 10(2): e1004138, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516406

RESUMO

The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA-mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences. These piRNAs launch a cycle of TE and piRNA cluster transcript cleavages resulting in the amplification of piRNA and TE silencing. Using genome-wide comparison of TE insertions and ovarian small RNA libraries from two Drosophila strains, we found that individual TEs inserted into euchromatic loci form novel dual-stranded piRNA clusters. Formation of the piRNA-generating loci by active individual TEs provides a more potent silencing response to the TE expansion. Like all piRNA clusters, individual TEs are also capable of triggering the production of endogenous small interfering (endo-si) RNAs. Small RNA production by individual TEs spreads into the flanking genomic regions including coding cellular genes. We show that formation of TE-associated small RNA clusters can down-regulate expression of nearby genes in ovaries. Integration of TEs into the 3' untranslated region of actively transcribed genes induces piRNA production towards the 3'-end of transcripts, causing the appearance of genic piRNA clusters, a phenomenon that has been reported in different organisms. These data suggest a significant role of TE-associated small RNAs in the evolution of regulatory networks in the germline.


Assuntos
Elementos de DNA Transponíveis/genética , Eucromatina/genética , Redes Reguladoras de Genes , RNA Interferente Pequeno/genética , Animais , Drosophila/genética , Feminino , Células Germinativas/metabolismo , Ovário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...