Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 10(1): 3637, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406163

RESUMO

Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.


Assuntos
Fibroblastos Associados a Câncer/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética
3.
Oncotarget ; 6(36): 38469-86, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26540348

RESUMO

The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy.


Assuntos
Quinases Lim/antagonistas & inibidores , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Células MCF-7 , Microtúbulos/metabolismo , Mitose/fisiologia , Neoplasias/enzimologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/enzimologia , Neuroblastoma/patologia
4.
Nat Cell Biol ; 11(12): 1458-64, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19935650

RESUMO

Extracellular signal-regulated kinase (ERK) controls fundamental cellular functions, including cell fate decisions. In PC12, cells shifting ERK activation from transient to sustained induces neuronal differentiation. As ERK associates with both regulators and effectors, we hypothesized that the mechanisms underlying the switch could be revealed by assessing the dynamic changes in ERK-interacting proteins that specifically occur under differentiation conditions. Using quantitative proteomics, we identified 284 ERK-interacting proteins. Upon induction of differentiation, 60 proteins changed their binding to ERK, including many proteins that were not known to participate in differentiation. We functionally characterized a subset, showing that they regulate the pathway at several levels and by different mechanisms, including signal duration, ERK localization, feedback, crosstalk with the Akt pathway and differential interaction and phosphorylation of transcription factors. Integrating these data with a mathematical model confirmed that ERK dynamics and differentiation are regulated by distributed control mechanisms rather than by a single master switch.


Assuntos
Linhagem da Célula , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Modelos Biológicos , Células PC12 , Ligação Proteica , Proteômica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...