Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 112: 108179, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197396

RESUMO

In this study, the potential of borophene (BOR) as a drug delivery system for resveratrol (RVT) was explored to evaluate its efficacy in cancer treatment. The excited, electronic, and geometric states of RVT, BOR, and the borophene-adsorbed resveratrol complex (BOR@RVT) were calculated to assess BOR's suitability as a drug carrier. Noncovalent interaction (NCI) plots indicated a weak force of attraction between BOR and RVT, which facilitates the offloading of RVT at the target site. Frontier molecular orbital (FMO) analysis showed that during electron excitation from Highest Occupied Molecular Orbital (HOMO) to Lowest Unoccupied Molecular Orbital (LUMO), charge transfer occurs from RVT to BOR. This was further confirmed by charge decomposition analysis (CDA). Calculations for the excited state of BOR@RVT revealed a red shift in the maximum absorption wavelength (λmax), indicating a photoinduced electron transfer (PET) process across various excited states. PET analysis demonstrated fluorescence quenching due to this interaction. Our findings suggest that BOR holds significant potential as a drug delivery vehicle for cancer treatment, offering a promising platform for the development of advanced drug delivery systems.

2.
J Mol Graph Model ; 123: 108517, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235904

RESUMO

This study aimed to explore the potential of Host-Guest coupling with Nanocarrier graphyne (GPH) to enhance the bioavailability of the drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (LUM) for brain tumor therapy. The electronic, geometric, and excited-state properties of GPH, LUM, and the graphyne@1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-complex (GPH@LUM-complex) were studied using DFT B3LYP/6-31G** level of theory. The results showed that the GPH@LUM-complex was stable with negative adsorption energy (-0.20 eV), and there was good interaction between GPH and LUM in the solvent phase. The weak interaction forces between the two indicated an easy release of the drug at the target site. The Frontier Molecular Orbitals (FMO), Charge Density Analysis (CDA), and Natural Bond Orbital (NBO) analysis supported LUM to GPH charge transfer during complex formation, and the Reduced Density Gradient (RDG) isosurfaces identified steric effects and non-bonded interactions. UV-visible examination showed the potential of the GPH@LUM-complex as a drug carrier with a blue shift of 23 nm wavelength in the electronic spectra. The PET process analysis revealed a fluorescence-quenching process, facilitating systematic drug delivery. The study concluded that GPH had potential as a carrier for delivering LUM, and different 2D nanomaterials could be explored for drug delivery applications. The theoretical study's findings may motivate researchers to investigate the practical applications of GPH@LUM-complex in oncology.


Assuntos
Neoplasias Encefálicas , Compostos de Nitrosoureia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA