Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 148(4): 044313, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390838

RESUMO

Ab initio calculations of the intermolecular potential energy surface (PES) of CO-N2 have been carried out using the closed-shell single- and double-excitation coupled cluster approach with a non-iterative perturbative treatment of triple excitations method and the augmented correlation-consistent quadruple-zeta (aug-cc-pVQZ) basis set supplemented with midbond functions. The global minimum (De = 117.35 cm-1) of the four-dimensional PES corresponds to an approximately T-shaped structure with the N2 subunit forming the leg and CO the top. The bound rovibrational levels of the CO-N2 complex were calculated for total angular momenta J = 0-8 on this intermolecular potential surface. The calculated dissociation energies D0 are 75.60 and 76.79 cm-1 for the ortho-N2 (A-symmetry) and para-N2 (B-symmetry) nuclear spin modifications of CO-N2, respectively. Guided by these bound state calculations, a new millimeter-wave survey for the CO-N2 complex in the frequency range of 110-145 GHz was performed using the intracavity OROTRON jet spectrometer. Transitions not previously observed were detected and assigned to the subbands connecting the K = 0 and 1, (jCO, jN2 ) = (1, 0) states with a new K = 1, (jCO, jN2 ) = (2, 0) state. Finally, the measured rotational energy levels of the CO-N2 complex were compared to the theoretical bound state results, thus providing a critical test of the quality of the PES presented. The computed rovibrational wave functions were analyzed to characterize the nature of the different bound states observed for the two nuclear spin species of CO-N2.

2.
Phys Chem Chem Phys ; 20(8): 5469-5477, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29075730

RESUMO

Collisions between H2O and CO play a crucial role in the gaseous component of comets and protoplanetary disks. We present here a five-dimensional potential energy surface (PES) for the H2O-CO collisional complex. Ab initio calculations were carried out using the explicitly-correlated closed-shell single- and double-excitation coupled cluster approach with the non-iterative perturbative treatment of triple excitations [CCSD(T)-F12a] method with the augmented correlation-consistent aug-cc-pVTZ basis sets. The most stable configuration of the complex, where the carbon atom of CO is pointing towards the OH bond of water, has a binding energy De = 646.1 cm-1. The end-over-end rotational constant of the H2O-CO complex was extracted from bound state calculations and it was found to be B0 = 0.0916 cm-1, in excellent agreement with experimental measurements. Finally, cross sections for the rotational excitation of CO by H2O are computed for s-wave (J = 0) scattering at the full close-coupling level of theory. These results will serve as a benchmark for future studies.

3.
J Chem Phys ; 143(15): 154303, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26493903

RESUMO

The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm(-1). The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm(-1) for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively.

4.
J Chem Phys ; 142(11): 114308, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796250

RESUMO

The rotational spectrum of the van der Waals complex NH3-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112-139 GHz. Newly observed and assigned transitions belong to the K = 0-0, K = 1-1, K = 1-0, and K = 2-1 subbands correlating with the rotationless (jk)NH3 = 00 ground state of free ortho-NH3 and the K = 0-1 and K = 2-1 subbands correlating with the (jk)NH3 = 11 ground state of free para-NH3. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH3-CO and para-NH3-CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH3-CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy De = 359.21 cm(-1). The bound rovibrational levels of the NH3-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 210.43 and 218.66 cm(-1) for ortho-NH3-CO and para-NH3-CO, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...