Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Khim ; 67(1): 42-50, 2021 Jan.
Artigo em Russo | MEDLINE | ID: mdl-33645521

RESUMO

Currently, opportunistic fungi of the genus Candida are the main causative agents of mycoses, which are especially severe upon condition of acquired immunodeficiency. The main target for the development of new antimycotics is the cytochrome P450 51 (CYP51) of the pathogenic fungus. Due to the widespread distribution of Candida strains resistancy to inhibitors of the azole class, the screening for CYP51 inhibitors both among non-azole compounds and among clinically used drugs repurposing as antimycotics is becoming urgent. To identify potential inhibitors from the non-azole group, an integrated approach was applied, including bioinformatics analysis, computer molecular modeling, and a surface plasmon resonance (SPR) technology. Using in silico modeling, the binding sites for acetylsalicylic acid, ibuprofen, chlorpromazine and haloperidol (this compounds, according to the literature, showed antimycotic activity) were predicted in the active site of CYP51 of Candida albicans and Candida glabrata. The Kd values of molecular complexes of acetylsalicylic acid, ibuprofen and haloperidol with CYP51, determined by SPR analysis, ranged from 18 µM to 126 µM. It was also shown that structural derivatives of haloperidol, containing various substituents, could be positioned in the active site of CYP51 of Candida albicans with the possible formation of coordination bonds between the hydroxyl groups of the derivatives and the iron atom in the heme of CYP51. Thus, the potential basic structures of non-azole compounds have been proposed, which can be used for the design of new CYP51 inhibitors of Candida fungi.


Assuntos
Antifúngicos , Candida , Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Candida albicans , Sistema Enzimático do Citocromo P-450 , Esterol 14-Desmetilase
2.
J Steroid Biochem Mol Biol ; 208: 105793, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33271253

RESUMO

Steroidogenesis is strictly regulated at multiple levels, as produced steroid hormones are crucial to maintain physiological functions. Cytochrome P450 enzymes are key players in adrenal steroid hormone biosynthesis and function within short redox-chains in mitochondria and endoplasmic reticulum. However, mechanisms regulating supply of reducing equivalents in the mitochondrial CYP-dependent system are not fully understood. In the present work, we aimed to estimate how the specific steroids, substrates, intermediates and products of multistep reactions modulate protein-protein interactions between adrenodoxin (Adx) and mitochondrial CYP11 s. Using the SPR technology we determined that steroid substrates affect affinity and stability of CYP11s-Adx complexes in an isoform-specific mode. In particular, cholesterol induces a 4-fold increase in the rate of CYP11A1 - Adx complex formation without significant effect on dissociation (koff decreased ∼1.5-fold), overall increasing complex affinity. At the same time steroid substrates decrease the affinity of both CYP11B1 - Adx and CYP11B2 - Adx complexes, predominantly reducing their stability (4-7 fold). This finding reveals differentiation of protein-protein interactions within the mitochondrial pool of CYPs, which have the same electron donor. The regulation of electron supply by the substrates might affect the overall steroid hormones production. Our experimental data provide further insight into protein-protein interactions within CYP-dependent redox chains involved in steroidogenesis.


Assuntos
Adrenodoxina/química , Citocromo P-450 CYP11B2/química , Sistema Enzimático do Citocromo P-450/ultraestrutura , Esteroide 11-beta-Hidroxilase/química , Adrenodoxina/genética , Adrenodoxina/ultraestrutura , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/ultraestrutura , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Oxirredução , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas/genética , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/ultraestrutura , Esteroides/biossíntese , Esteroides/química , Esteroides/metabolismo , Especificidade por Substrato
3.
Biomed Khim ; 65(5): 374-379, 2019 Aug.
Artigo em Russo | MEDLINE | ID: mdl-31666408

RESUMO

Identification of new protein-protein interactions (PPI) and characterization of quantitative parameters of complex formation represent one of central tasks of protein interactomics. This work is a logical continuation of the cycle of our previous works devoted to the study of PPIs among the components of cytochrome P450-dependent monooxygenase system. Using an optical biosensor of Surface Plasmon Resonance (SPR biosensor), a comparative analysis on the determination of kinetic and equilibrium parameters of complex formation between the membrane-bound hemoprotein cytochrome b5 with cytochrome P450s was performed using two different protocols for protein immobilization: 1) covalent non-oriented one on to the carboxymethyl dextran chip type CM and 2) non-covalent oriented immobilization in the lipid environment on the chip type L1 with internal control of liposomes surface distribution. In the second protocol it was shown that the complex formation was characterized by 2.5 times higher affinity due to an decrease in rate dissociation constants. The appropriateness of using both experimental models is discussed.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Lipossomos/metabolismo , Mapeamento de Interação de Proteínas , Humanos , Cinética , Lipídeos , Ressonância de Plasmônio de Superfície
4.
Dokl Biochem Biophys ; 487(1): 260-263, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31559593

RESUMO

The interaction of Kunitz-type peptide, HMIQ3c1, from the sea anemone Heteractis magnifica with several serine proteases, including inflammatory proteases, was investigated using the surface plasmon resonance approach. We showed that the recombinant analog of HMIQ3c1 forms sufficiently strong complexes with trypsin (KD = 1.07 × 10-9 М) and chymotrypsin (KD = 4.70 × 10-8 М). Analysis of thermodynamic parameters of HMIQ3c1/chymotrypsin revealed significant contribution of the entropic factor to the complex formation. The formation of specific complexes of HMIQ3c1 with the kallikrein (KD = 2.81 × 10-8 М) and neutrophil elastase (KD = 1.11 × 10-7 М) indicates its anti-inflammatory activity and makes prospects to use the peptide as a potential therapeutic agent.


Assuntos
Peptídeos/metabolismo , Anêmonas-do-Mar/química , Sequência de Aminoácidos , Animais , Entropia , Peptídeos/química , Ligação Proteica , Serina Proteases/metabolismo , Ressonância de Plasmônio de Superfície
5.
Biomed Khim ; 64(2): 169-174, 2018 Mar.
Artigo em Russo | MEDLINE | ID: mdl-29723146

RESUMO

It becomes increasingly clear that most proteins of living systems exist as components of various protein complexes rather than individual molecules. The use of various proteomic techniques significantly extended our knowledge not only about functioning of individual complexes but also formed a basis for systemic analysis of protein-protein interactions. In this study gel-filtration chromatography accompanied by mass-spectrometry was used for the interactome analysis of human liver proteins. In six fractions (with average molecular masses of 45 kDa, 60 kDa, 85 kDa, 150 kDa, 250 kDa, and 440 kDa) 797 proteins were identified. In dependence of their distribution profiles in the fractions, these proteins could be subdivided into four groups: (1) single monomeric proteins that are not involved in formation of stable protein complexes; (2) proteins existing as homodimers or heterodimers with comparable partners; (3) proteins that are partially exist as monomers and partially as components of protein complexes; (4) proteins that do not exist in the monomolecular state, but also exist within protein complexes containing three or more subunits. Application of this approach to known isatin-binding proteins resulted in identification of proteins involved in formation of the homo- and heterodimers and mixed protein complexes.


Assuntos
Complexos Multiproteicos/química , Biossíntese de Proteínas , Proteômica , Humanos , Fígado , Espectrometria de Massas , Peso Molecular
6.
Acta Naturae ; 9(4): 92-100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29340222

RESUMO

Thromboxane synthase (TBXAS1) catalyzes the isomerization reaction of prostaglandin H2 producing thromboxane A2, the autocrine and paracrine factor in many cell types. A high activity and metastability by these arachidonic acid derivatives suggests the existence of supramolecular structures that are involved in the regulation of the biosynthesis and directed translocation of thromboxane to the receptor. The objective of this study was to identify TBXAS1 protein partners from human liver tissue lysate using a complex approach based on the direct molecular fishing technique, LC-MS/MS protein identification, and protein-protein interaction validation by surface plasmon resonance (SPR). As a result, 12 potential TBXAS1 protein partners were identified, including the components regulating cytoskeleton organization (BBIP1 and ANKMY1), components of the coagulation cascade of human blood (SERPINA1, SERPINA3, APOH, FGA, and FN1), and the enzyme involved in the metabolism of xenobiotics and endogenous bioregulators (CYP2E1). SPR validation on the Biacore 3000 biosensor confirmed the effectiveness of the interaction between CYP2E1 (the enzyme that converts prostaglandin H2 to 12-HHT/thromboxane A2 proantagonist) and TBXAS1 (Kd = (4.3 ± 0.4) × 10-7 M). Importantly, the TBXAS1•CYP2E1 complex formation increases fivefold in the presence of isatin (indole-2,3-dione, a low-molecular nonpeptide endogenous bioregulator, a product of CYP2E1). These results suggest that the interaction between these hemoproteins is important in the regulation of the biosynthesis of eicosanoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...