Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0236323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38551351

RESUMO

Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.


Assuntos
Técnicas Biossensoriais , Águas Residuárias , Recombinases , DNA , Pseudomonas , Corantes
2.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36824759

RESUMO

Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of pathogens. Over 2 million complete SARS-CoV-2 genomes are now publicly available, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow and costly. Here we present Olivar, a first step towards a fully automated, variant-aware design of tiled amplicons for pathogen genomes. Olivar converts each nucleotide of the target genome into a numeric risk score, capturing undesired sequence features that should be avoided. In a direct comparison with PrimalScheme, we show that Olivar has fewer SNPs overlapping with primers and predicted PCR byproducts. We also compared Olivar head-to-head with ARTIC v4.1, the most widely used primer set for SARS-CoV-2 sequencing, and show Olivar yields similar read mapping rates (~90%) and better coverage to the manually designed ARTIC v4.1 amplicons. We also evaluated Olivar on real wastewater samples and found that Olivar had up to 3-fold higher mapping rates while retaining similar coverage. In summary, Olivar automates and accelerates the generation of tiled amplicons, even in situations of high mutation frequency and/or density. Olivar is available as a web application at https://olivar.rice.edu. Olivar can also be installed locally as a command line tool with Bioconda. Source code, installation guide and usage are available at https://github.com/treangenlab/Olivar.

3.
Water Res ; 231: 119648, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702023

RESUMO

Wastewater surveillance is a passive and efficient way to monitor the spread of infectious diseases in large populations and high transmission areas such as preK-12 schools. Infections caused by respiratory viruses in school-aged children are likely underreported, particularly because many children may be asymptomatic or mildly symptomatic. Wastewater monitoring of SARS-CoV-2 has been studied extensively and primarily by sampling at centralized wastewater treatment plants, and there are limited studies on SARS-CoV-2 in preK-12 school wastewater. Similarly, wastewater detections of influenza have only been reported in wastewater treatment plant and university manhole samples. Here, we present the results of a 17-month wastewater monitoring program for SARS-CoV-2 (n = 2176 samples) and influenza A and B (n = 1217 samples) in 51 preK-12 schools. We show that school wastewater concentrations of SARS-CoV-2 RNA were strongly associated with COVID-19 cases in schools and community positivity rates, and that influenza detections in school wastewater were significantly associated with citywide influenza diagnosis rates. Results were communicated back to schools and local communities to enable mitigation strategies to stop the spread, and direct resources such as testing and vaccination clinics. This study demonstrates that school wastewater surveillance is reflective of local infections at several population levels and plays a crucial role in the detection and mitigation of outbreaks.


Assuntos
COVID-19 , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , SARS-CoV-2 , Águas Residuárias , COVID-19/epidemiologia , RNA Viral , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
Sci Total Environ ; 833: 155059, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35395314

RESUMO

Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Pandemias , SARS-CoV-2/genética , Águas Residuárias
5.
Water Res ; 197: 117043, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784608

RESUMO

As the COVID-19 pandemic continues to affect communities across the globe, the need to contain the spread of the outbreaks is of paramount importance. Wastewater monitoring of the SARS-CoV-2 virus, the causative agent responsible for COVID-19, has emerged as a promising tool for health officials to anticipate outbreaks. As interest in wastewater monitoring continues to grow and municipalities begin to implement this approach, there is a need to further identify and evaluate methods used to concentrate SARS-CoV-2 virus RNA from wastewater samples. Here we evaluate the recovery, cost, and throughput of five different concentration methods for quantifying SARS-CoV-2 virus RNA in wastewater samples. We tested the five methods on six different wastewater samples. We also evaluated the use of a bovine coronavirus vaccine as a process control and pepper mild mottle virus as a normalization factor. Of the five methods we tested head-to-head, we found that HA filtration with bead beating performed the best in terms of sensitivity and cost. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacinas contra COVID-19 , Bovinos , Cidades , Humanos , Pandemias , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
Front Microbiol ; 11: 618373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633695

RESUMO

The rapid diversification of synthetic biology tools holds promise in making some classically hard-to-solve environmental problems tractable. Here we review longstanding problems in the Earth and environmental sciences that could be addressed using engineered microbes as micron-scale sensors (biosensors). Biosensors can offer new perspectives on open questions, including understanding microbial behaviors in heterogeneous matrices like soils, sediments, and wastewater systems, tracking cryptic element cycling in the Earth system, and establishing the dynamics of microbe-microbe, microbe-plant, and microbe-material interactions. Before these new tools can reach their potential, however, a suite of biological parts and microbial chassis appropriate for environmental conditions must be developed by the synthetic biology community. This includes diversifying sensing modules to obtain information relevant to environmental questions, creating output signals that allow dynamic reporting from hard-to-image environmental materials, and tuning these sensors so that they reliably function long enough to be useful for environmental studies. Finally, ethical questions related to the use of synthetic biosensors in environmental applications are discussed.

7.
Mol Syst Biol ; 13(12): 964, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273640

RESUMO

The major facilitator superfamily (MFS) effluxers are prominent mediators of antimicrobial resistance. The biochemical characterization of MFS proteins is hindered by their complex membrane environment that makes in vitro biochemical analysis challenging. Since the physicochemical properties of proteins drive the fitness of an organism, we posed the question of whether we could reverse that relationship and derive meaningful biochemical parameters for a single protein simply from fitness changes it confers under varying strengths of selection. Here, we present a physiological model that uses cellular fitness as a proxy to predict the biochemical properties of the MFS tetracycline efflux pump, TetB, and a family of single amino acid variants. We determined two lumped biochemical parameters roughly describing Km and Vmax for TetB and variants. Including in vivo protein levels into our model allowed for more specified prediction of pump parameters relating to substrate binding affinity and pumping efficiency for TetB and variants. We further demonstrated the general utility of our model by solely using fitness to assay a library of tet(B) variants and estimate their biochemical properties.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Proteínas de Membrana Transportadoras/química , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...