Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474863

RESUMO

In 2017, four independent publications described the glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as receptor for the growth differentiation factor 15 (GDF15, also MIC-1, NAG-1) with an expression exclusively in the mice brainstem area postrema (AP) and nucleus tractus solitarii (NTS) where it mediates effects of GDF15 on reduction of food intake and body weight. GDF15 is a cell stress cytokine with a widespread expression and pleiotropic effects, which both seem to be in contrast to the reported highly specialized localization of its receptor. This discrepancy prompts us to re-evaluate the expression pattern of GFRAL in the brain and peripheral tissues of mice. In this detailed immunohistochemical study, we provide evidence for a more widespread distribution of this receptor. Apart from the AP/NTS region, GFRAL-immunoreactivity was found in the prefrontal cortex, hippocampus, nucleus arcuatus and peripheral tissues including liver, small intestine, fat, kidney and muscle tissues. This widespread receptor expression, not taken into consideration so far, may explain the multiple effects of GDF-15 that are not yet assigned to GFRAL. Furthermore, our results could be relevant for the development of novel pharmacological therapies for physical and mental disorders related to body image and food intake, such as eating disorders, cachexia and obesity.


Assuntos
Caquexia , Obesidade , Humanos , Camundongos , Animais , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Peso Corporal/fisiologia , Obesidade/metabolismo , Caquexia/metabolismo , Núcleo Solitário/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077184

RESUMO

Phospholipid scramblase 4 (PLSCR4) is a member of a conserved enzyme family with high relevance for the remodeling of phospholipid distribution in the plasma membrane and the regulation of cellular signaling. While PLSCR1 and -3 are involved in the regulation of adipose-tissue expansion, the role of PLSCR4 is so far unknown. PLSCR4 is significantly downregulated in an adipose-progenitor-cell model of deficiency for phosphatase and tensin homolog (PTEN). PTEN acts as a tumor suppressor and antagonist of the growth and survival signaling phosphoinositide 3-kinase (PI3K)/AKT cascade by dephosphorylating phosphatidylinositol-3,4,5-trisphosphate (PIP3). Patients with PTEN germline deletion frequently develop lipomas. The underlying mechanism for this aberrant adipose-tissue growth is incompletely understood. PLSCR4 is most highly expressed in human adipose tissue, compared with other phospholipid scramblases, suggesting a specific role of PLSCR4 in adipose-tissue biology. In cell and mouse models of lipid accumulation, we found PLSCR4 to be downregulated. We observed increased adipogenesis in PLSCR4-knockdown adipose progenitor cells, while PLSCR4 overexpression attenuated lipid accumulation. PLSCR4 knockdown was associated with increased PIP3 levels and the activation of AKT. Our results indicated that PLSCR4 is a regulator of PI3K/AKT signaling and adipogenesis and may play a role in PTEN-associated adipose-tissue overgrowth and lipoma formation.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos/metabolismo , Animais , Humanos , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos/genética
3.
Biomedicines ; 10(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884996

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality. Considering its very poor prognosis, novel treatment options are urgently needed. MicroRNAs (miRNAs) are involved in the regulation of various physiological and pathological processes. In tumors, aberrant downregulation of given miRNAs may result in pathological overexpression of oncogenes, rendering miRNA replacement as a promising therapeutic strategy. In different tumor entities, miRNA-506-3p (miR506-3p) has been ambivalently described as tumor suppressing or oncogenic. In PDAC, miR-506 is mainly considered as a tumor-suppressing miRNA. In this study, we extensively analyze the cellular and molecular effects of miRNA-506-3p replacement in different PDAC cell lines. Beyond profound antiproliferation and induction of cell death and autophagy, we describe new cellular miR506-3p effects, i.e., induction of senescence and reactive oxygen species (ROS), as well as alterations in mitochondrial potential and structure, and identify multiple underlying molecular effects. In a preclinical therapy study, PDAC xenograft-bearing mice were treated with nanoparticle-formulated miRNA-506 mimics. Profound tumor inhibition upon systemic miRNA-506 administration was associated with multiple cellular and molecular effects. This demonstrates miRNA replacement as a potential therapeutic option for PDAC patients. Due to its broad mechanisms of action on multiple relevant target genes, miR506-3p is identified as a particularly powerful tumor-inhibitory miRNA.

4.
Front Cell Dev Biol ; 10: 873278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813217

RESUMO

The adhesion G protein-coupled receptor (aGPCR) GPR126/ADGRG6 plays an important role in several physiological functions, such as myelination or peripheral nerve repair. This renders the receptor an attractive pharmacological target. GPR126 is a mechano-sensor that translates the binding of extracellular matrix (ECM) molecules to its N terminus into a metabotropic intracellular signal. To date, the structural requirements and the character of the forces needed for this ECM-mediated receptor activation are largely unknown. In this study, we provide this information by combining classic second-messenger detection with single-cell atomic force microscopy. We established a monoclonal antibody targeting the N terminus to stimulate GPR126 and compared it to the activation through its known ECM ligands, collagen IV and laminin 211. As each ligand uses a distinct mode of action, the N terminus can be regarded as an allosteric module that can fine-tune receptor activation in a context-specific manner.

5.
Front Physiol ; 13: 866938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669577

RESUMO

Objectives: The intracellular NLRP3 inflammasome is an important regulator of sterile inflammation. Recent data suggest that inflammasome particles can be released into circulation. The effects of exercise on circulating extracellular apoptosis-associated speck-like protein (ASC) particles and their effects on endothelial cells are not known. Methods: We established a flow cytometric method to quantitate extracellular ASC specks in human serum. ASC specks were quantitated in 52 marathon runners 24-72 h before, immediately after, and again 24-58 h after the run. For mechanistic characterization, NLRP3 inflammasome particles were isolated from a stable mutant NLRP3 (p.D303N)-YFP HEK cell line and used to treat primary human coronary artery endothelial cells. Results: Athletes showed a significant increase in serum concentration of circulating ASC specks immediately after the marathon (+52% compared with the baseline, p < 0.05) and a decrease during the follow-up after 24-58 h (12% reduction compared with immediately after the run, p < 0.01). Confocal microscopy revealed that human endothelial cells can internalize extracellular NLRP3 inflammasome particles. After internalization, endothelial cells showed an inflammatory response with a higher expression of the cell adhesion molecule ICAM1 (6.9-fold, p < 0.05) and increased adhesion of monocytes (1.5-fold, p < 0.05). Conclusion: These findings identify extracellular inflammasome particles as novel systemic mediators of cell-cell communication that are transiently increased after acute extensive exercise with a high mechanical muscular load.

6.
Mater Today Bio ; 13: 100190, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34988418

RESUMO

The aim of this study was the evaluation of cross-linked gelatin microparticles (cGM) as substrates for osteogenic cell culture to assemble 3D microtissues and their use as delivery system for siRNA to cells in these assemblies. In a 2D transwell cultivation system, we found that cGM are capable to accumulate calcium ions from the surrounding medium. Such a separation of cGM and SaOS-2 â€‹cells consequently led to a suppressed matrix mineral formation in the SaOS-2 culture on the well bottom of the transwell system. Thus, we decided to use cGM as component in 3D microtissues and get a close contact between calcium ion accumulating microparticles and cells to improve matrix mineralization. Gelatin microparticles were cross-linked with a N,N-diethylethylenediamine-derivatized (DEED) maleic anhydride (MA) containing oligo (pentaerythritol diacrylate monostearate-co-N-isopropylacrylamide-co-MA) (oPNMA) and aggregated with SaOS-2 or human mesenchymal stem cells (hMSC) to microtissue spheroids. We systematically varied the content of cGM in microtissues and observed cell differentiation and tissue formation. Microtissues were characterized by gene expression, ALP activity and matrix mineralization. Mineralization was detectable in microtissues with SaOS-2 â€‹cells after 7 days and with hMSC after 24-28 days in osteogenic culture. When we transfected hMSC via cGM loaded with Lipofectamine complexed chordin siRNA, we found increased ALP activity and accelerated mineral formation in microtissues in presence of BMP-2. As a model for positive paracrine effects that indicate promising in vivo effects of these microtissues, we incubated pre-differentiated microtissues with freshly seeded hMSC monolayers and found improved mineral formation all over the well in the co-culture model. These findings may support the concept of microtissues from hMSC and siRNA-loaded cGM for bone regeneration.

7.
Sci Rep ; 11(1): 15156, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312415

RESUMO

Inflammation driven by intracellular activation of the NLRP3 inflammasome is involved in the pathogenesis of a variety of diseases including vascular pathologies. Inflammasome specks are released into the extracellular compartment from disrupting pyroptotic cells. The potential uptake and function of extracellular NLRP3 inflammasomes in human coronary artery smooth muscle cells (HCASMC) are unknown. Fluorescently labeled NLRP3 inflammasome particles were isolated from a mutant NLRP3-YFP cell line and used to treat primary HCASMC for 4 and 24 h. Fluorescent and expressional analyses showed that extracellular NLRP3-YFP particles are internalized into HCASMC, where they remain active and stimulate intracellular caspase-1 (1.9-fold) and IL-1ß (1.5-fold) activation without inducing pyroptotic cell death. Transcriptomic analysis revealed increased expression level of pro-inflammatory adhesion molecules (ICAM1, CADM1), NLRP3 and genes involved in cytoskleleton organization. The NLRP3-YFP particle-induced gene expression was not dependent on NLRP3 and caspase-1 activation. Instead, the effects were partly abrogated by blocking NFκB activation. Genes, upregulated by extracellular NLRP3 were validated in human carotid artery atheromatous plaques. Extracellular NLRP3-YFP inflammasome particles promoted the secretion of pro-atherogenic and inflammatory cytokines such as CCL2/MCP1, CXCL1 and IL-17E, and increased HCASMC migration (1.8-fold) and extracellular matrix production, such as fibronectin (5.8-fold) which was dependent on NFκB and NLRP3 activation. Extracellular NLRP3 inflammasome particles are internalized into human coronary artery smooth muscle cells where they induce pro-inflammatory and pro-atherogenic effects representing a novel mechanism of cell-cell communication and perpetuation of inflammation in atherosclerosis. Therefore, extracellular NLRP3 inflammasomes may be useful to improve the diagnosis of inflammatory diseases and the development of novel anti-inflammatory therapeutic strategies.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Vasos Coronários/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aterosclerose/patologia , Transporte Biológico Ativo , Comunicação Celular , Linhagem Celular , Células Cultivadas , Vasos Coronários/citologia , Citocinas/metabolismo , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Eur J Pharm Biopharm ; 166: 61-74, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34077790

RESUMO

Bovine milk-derived extracellular vesicles (EVs) hold promises as oral drug delivery systems. Since EV bioavailability studies are difficult to compare, key factors regarding EV uptake and intestinal permeability remain little understood. This work aims to critically study uptake and transport properties of milk-derived EVs across the intestinal barrier in vitro by standardization approaches. Therefore, uptake properties were directly compared to liposomes in intestinal Caco-2 cells. Reliable staining results were obtained by the choice of three distinct EV labeling sites, while non-specific dye transfer and excess dye removal were carefully controlled. A novel fluorescence correction factor was implemented to account for different labeling efficiencies. Both EV and liposome uptake occurred mainly energy dependent with the neonatal Fc receptor (FcRn) providing an exclusive active pathway for EVs. Confocal microscopy revealed higher internalization of EVs whereas liposomes rather remained attached to the cell surface. Internalization could be improved when changing the liposomal formulation to resemble the EV lipid composition. In a Caco-2/HT29-MTX co-culture liposomes and EVs showed partial mucus penetration. For transport studies across Caco-2 monolayers we further established a standardized protocol considering the distinct requirements for EVs. Especially insert pore sizes were systematically compared with 3 µm inserts found obligatory. Obtained apparent permeability coefficients (Papp) reflecting the transport rate will allow for better comparison of future bioavailability testing.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/metabolismo , Lipossomos/metabolismo , Leite , Permeabilidade , Animais , Transporte Biológico Ativo/fisiologia , Células CACO-2 , Técnicas de Cocultura/métodos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Microscopia Confocal/métodos , Receptores Fc/metabolismo
9.
J Nanobiotechnology ; 18(1): 173, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228711

RESUMO

BACKGROUND: MiRNAs act as negative regulators of gene expression through target mRNA degradation or inhibition of its translation. In cancer, several miRNAs are upregulated and play crucial roles in tumorigenesis, making the inhibition of these oncomiRs an interesting therapeutic approach. This can be achieved by directly complementary single-stranded anti-miRNA oligonucleotides (antimiRs). A major bottleneck in antimiR therapy, however, is their efficient delivery. The nanoparticle formation with polyethylenimine (PEI) may be particularly promising, based on the PEI's ability to electrostatically interact with oligonucleotides. This leads to their protection and supports delivery. In the present study, we explore for the first time PEI for antimiR formulation and delivery. We use the branched low molecular weight PEI F25-LMW for the complexation of different antimiRs, and analyse tumor- and metastasis-inhibitory effects of PEI/antimiR complexes in different tumor models. RESULTS: In prostate carcinoma, transfection of antimiRs against miR-375 and miR-141 leads to tumor cell inhibition in 2D- and 3D-models. More importantly, an in vivo tumor therapy study in prostate carcinoma xenografts reveals anti-tumor effects of the PEI/antimiR complexes. In advanced melanoma and metastasis, we identify by a microRNA screen miR-150 as a particularly relevant oncomiR candidate, and validate this result in vitro and in vivo. Again, the systemic application of PEI/antimiR complexes inhibiting this miRNA, or the previously described antimiR-638, leads to profound tumor growth inhibition. These effects are associated with the upregulation of direct miRNA target genes. In a melanoma metastasis mouse model, anti-metastatic effects of PEI/antimiR treatment are observed as well. CONCLUSIONS: We thus describe PEI-based complexes as efficient platform for antimiR therapy, as determined in two different tumor entities using in vivo models of tumor growth or metastasis. Our study also highlights the therapeutic relevance of miR-375, miR-141, miR-150 and miR-638 as target miRNAs for antimiR-mediated inhibition.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , MicroRNAs/antagonistas & inibidores , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Polietilenoimina/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
10.
J Cancer Res Clin Oncol ; 146(4): 859, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32112147

RESUMO

In the original article, the title of the article is "Restoration of MARCK enhances chemosensitivity in cancer". The authors would like to change the article title to "Restoration of MARCKS enhances chemosensitivity in cancer" by adding a letter "S" to the word MARCK.

11.
Cell Commun Signal ; 18(1): 31, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102673

RESUMO

BACKGROUND: Medium-chain fatty acids and their 3-hydroxy derivatives are metabolites endogenously produced in humans, food-derived or originating from bacteria. They activate G protein-coupled receptors, including GPR84 and HCA3, which regulate metabolism and immune functions. Although both receptors are coupled to Gi proteins, share at least one agonist and show overlapping tissue expression, GPR84 exerts pro-inflammatory effects whereas HCA3 is involved in anti-inflammatory responses. Here, we analyzed signaling kinetics of both HCA3 and GPR84, to unravel signal transduction components that may explain their physiological differences. METHODS: To study the signaling kinetics and components involved in signal transduction of both receptors we applied the label-free dynamic mass redistribution technology in combination with classical cAMP, ERK signaling and ß-arrestin-2 recruitment assays. For phenotypical analyses, we used spheroid cell culture models. RESULTS: We present strong evidence for a natural biased signaling of structurally highly similar agonists at HCA3 and GPR84. We show that HCA3 signaling and trafficking depends on dynamin-2 function. Activation of HCA3 by 3-hydroxyoctanoic acid but not 3-hydroxydecanoic acid leads to ß-arrestin-2 recruitment, which is relevant for cell-cell adhesion. GPR84 stimulation with 3-hydroxydecanoic acid causes a sustained ERK activation but activation of GPR84 is not followed by ß-arrestin-2 recruitment. CONCLUSIONS: In summary, our results highlight that biased agonism is a physiological property of HCA3 and GPR84 with relevance for innate immune functions potentially to differentiate between endogenous, non-pathogenic compounds and compounds originating from e.g. pathogenic bacteria. Video Abstract.


Assuntos
Receptores Acoplados a Proteínas G/imunologia , Receptores Nicotínicos/imunologia , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Cinética , Transdução de Sinais/imunologia
12.
J Cancer Res Clin Oncol ; 146(4): 843-858, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056006

RESUMO

PURPOSE: Increased ATP-binding-cassette (ABC) transporter activity is a major cause of chemotherapy resistance in cancer. The ABC transporter family member ABCB1 is often overexpressed in colorectal cancer (CRC). Phosphatidylinositol-4,5-bisphosphat (PI(4,5)P2)-dependent pathways are involved in the regulation of ABCB1 function. The protein Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) is a pivotal regulator of PI(4,5)P2 and inactivated in many CRC cancers via genetic deletion or hyperphosphorylation. Therefore, MARCKS may critically impact ABCB1. METHODS: CRC samples as well as CRC cell lines were tested for a connection between MARCKS and ABCB1 via immunofluorescence and Western-blot analysis. ABCB1 function was studied via calcein influx assay under treatment with known ABCB1 inhibitors (verapamil, tariquidar) as well as the kinase inhibitor bosutinib. ABCB1 internalization and MARCKS translocation was analyzed via confocal microscopy exploiting the endocytosis inhibitors chlorpromazine and dynasore. Abundance of PI(4,5)P2 was monitored by intramolecular fluorescence resonance energy transfer (FRET). Reproductive cell survival was studied via colorimetric WST-1 and clonogenic assays in combination with exposure to the chemotherapeutics doxorubicin and 5-fuorouracil (5-FU). RESULTS: We found increased ABCB1 expression in MARCKS negative CRC patient tumor samples and established CRC cell lines. Mechanistically, the reconstitution of MARCKS function via recombinant expression or the pharmacological inhibition of MARCKS phosphorylation led to a substantial decrease in ABCB1 activity. In CRC cells, bosutinib treatment resulted in a MARCKS translocation from the cytosol to the plasma membrane, while simultaneously, ABCB1 was relocated to intracellular compartments. Inhibition of MARCKS phosphorylation via bosutinib rendered cells more sensitive to the chemotherapeutics doxorubicin and 5-FU. CONCLUSIONS: Cells devoid of MARCKS function showed incomplete ABCB1 internalization, leading to higher ABCB1 activity enhancing chemoresistance. Vice versa our data suggest the prevention of MARCKS inhibition by reversing hyperphosphorylation or genomic restoration after deletion as two promising approaches to overcome tumor cell resistance towards chemotherapeutic ABCB1 substrates.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Compostos de Anilina , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fluoresceínas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HT29 , Humanos , Microscopia Confocal , Substrato Quinase C Rico em Alanina Miristoilada/deficiência , Nitrilas , Fosforilação , Quinolinas
13.
J Biophotonics ; 13(4): e201960181, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965728

RESUMO

The selective microscopic imaging of the plasma membrane and adjacent structures by total internal reflection fluorescence (TIRF) microscopy is a versatile and frequently used technique in cell biology. A reduction of imaging artifacts in objective-type TIRF microscopy can be achieved by circular or multi-spot laser illumination or by using noncoherent light sources that are projected into the back focal plane as a light annulus. Light-emitting diode (LED)-based TIRF excitation is a recent advancement of the latter strategy. While some basic principles of LED-TIRF remain the same as in laser-based methods, the calculation of penetration depth, the flatness of illumination and the amount of available illumination power differ. This study provides the theoretical framework for the construction and adjustment of LED-TIRF. Using state-of-the art high power LED emitters, LED-TIRF achieves excitation efficiencies that are comparable to laser-based systems and homogenously illuminate the entire field of view, thus, allowing variation of the penetration depth or quantitative photobleaching-assisted imaging protocols. Using autofluorescent transmembrane, soluble and membrane-attached fusion proteins, we provide examples for a photobleaching-based assessment of the exchange kinetics of proteins within living human endothelial cells.


Assuntos
Células Endoteliais , Proteínas de Membrana , Membrana Celular , Humanos , Microscopia de Fluorescência , Fotodegradação
14.
Bioorg Med Chem ; 27(19): 115039, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420257

RESUMO

Fluorescent tagging of bioactive molecules is a powerful tool to study cellular uptake kinetics and is considered as an attractive alternative to radioligands. In this study, we developed fluorescent histone deacetylase (HDAC) inhibitors and investigated their biological activity and cellular uptake kinetics. Our approach was to introduce a dansyl group as a fluorophore in the solvent-exposed cap region of the HDAC inhibitor pharmacophore model. Three novel fluorescent HDAC inhibitors were synthesized utilizing efficient submonomer protocols followed by the introduction of a hydroxamic acid or 2-aminoanilide moiety as zinc-binding group. All compounds were tested for their inhibition of selected HDAC isoforms, and docking studies were subsequently performed to rationalize the observed selectivity profiles. All HDAC inhibitors were further screened in proliferation assays in the esophageal adenocarcinoma cell lines OE33 and OE19. Compound 2, 6-((N-(2-(benzylamino)-2-oxoethyl)-5-(dimethylamino)naphthalene)-1-sulfonamido)-N-hydroxyhexanamide, displayed the highest HDAC inhibitory capacity as well as the strongest anti-proliferative activity. Fluorescence microscopy studies revealed that compound 2 showed the fastest uptake kinetic and reached the highest absolute fluorescence intensity of all compounds. Hence, the rapid and increased cellular uptake of 2 might contribute to its potent anti-proliferative properties.


Assuntos
Compostos de Dansil/farmacologia , Corantes Fluorescentes/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Peptoides/farmacologia , Acetilação/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos de Dansil/síntese química , Compostos de Dansil/metabolismo , Compostos de Dansil/farmacocinética , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacocinética , Histona Desacetilase 1/metabolismo , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Histonas/química , Histonas/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Peptoides/síntese química , Peptoides/metabolismo , Peptoides/farmacocinética , Ligação Proteica
15.
J Biophotonics ; 12(11): e201900033, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31148410

RESUMO

Total internal reflection fluorescence excitation (TIRF) microscopy allows the selective observation of fluorescent molecules in immediate proximity to an interface between different refractive indices. Objective-type or prism-less TIRF excitation is typically achieved with laser light sources. We here propose a simple, yet optically advantageous light-emitting diode (LED)-based implementation of objective-type TIRF (LED-TIRF). The proposed LED-TIRF condenser is affordable and easy to set up at any epifluorescence microscope to perform multicolor TIRF and/or combined TIRF-epifluorescence imaging with even illumination of the entire field of view. Electrical control of LED light sources replaces mechanical shutters or optical modulators. LED-TIRF microscopy eliminates safety burdens that are associated with laser sources, offers favorable instrument lifetime and stability without active cooling. The non-coherent light source and the type of projection eliminate interference fringing and local scattering artifacts that are associated with conventional laser-TIRF. Unlike azimuthal spinning laser-TIRF, LED-TIRF does not require synchronization between beam rotation and the camera and can be monitored with either global or rolling shutter cameras. Typical implementations, such as live cell multicolor imaging in TIRF and epifluorescence of imaging of short-lived, localized translocation events of a Ca2+ -sensitive protein kinase C α fusion protein are demonstrated.


Assuntos
Luz , Microscopia de Fluorescência/instrumentação , Fenômenos Ópticos , Semicondutores , Artefatos , Cálcio/metabolismo , Células HEK293 , Humanos , Lasers , Miócitos de Músculo Liso/metabolismo
16.
Free Radic Biol Med ; 113: 16-25, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917508

RESUMO

RATIONALE: Hydrogen peroxide (H2O2) is a stable reactive oxygen species (ROS) that has long been implicated in insulin signal transduction in adipocytes. However, H2O2's role in mediating insulin's effects on the heart are unknown. OBJECTIVE: We investigated the role of H2O2 in activating insulin-dependent changes in cardiac myocyte metabolic and inotropic pathways. The sources of insulin-dependent H2O2 generation were also studied. METHODS AND RESULTS: In addition to the canonical role of insulin in modulating cardiac metabolic pathways, we found that insulin also inhibited beta adrenergic-induced increases in cardiac contractility. Catalase and NADPH oxidase (NOX) inhibitors blunted activation of insulin-responsive kinases Akt and mTOR and attenuated beta adrenergic receptor-mediated responses. These insulin responses were lost in a mouse model of type 2 diabetes, suggesting a role for these H2O2-dependent pathways in the diabetic heart. The H2O2-sensitive fluorescent biosensor HyPer revealed rapid increases in cytosolic and caveolar H2O2 concentrations in response to insulin treatment, which were blocked by NOX inhibitors and attenuated in NOX2 KO and NOX4 KO mice. In NOX2 KO cardiac myocytes, insulin-mediated phosphorylation of Akt and mTOR was blocked, while these responses were unaffected in cardiac myocytes from NOX4 KO mice. In contrast, insulin's effects on contractility were lost in cardiac myocytes from NOX4 KO animals but were retained in NOX2 KO mice. CONCLUSIONS: These studies identify a proximal point of bifurcation in cardiac insulin signaling through the simultaneous activation of both NOX2 and NOX4. Each NOX isoform generates H2O2 in cardiac myocytes with distinct time courses, with H2O2 derived from NOX2 augmenting Akt-dependent metabolic effects of insulin, while H2O2 from NOX4 blocks beta adrenergic increases in inotropy. These findings suggest that insulin resistance in the diabetic heart may lead to potentially deleterious potentiation of beta adrenergic responses.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 2/enzimologia , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Camundongos , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
J Gen Physiol ; 147(6): 467-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27185858

RESUMO

Within the ion channel-coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1-10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca(2+) influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na(+)-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg(2+) homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation.


Assuntos
Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Glioma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Magnésio/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Ratos
18.
Blood ; 127(11): 1468-80, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26744461

RESUMO

Platelets are essential for hemostasis, and thrombocytopenia is a major clinical problem. Megakaryocytes (MKs) generate platelets by extending long processes, proplatelets, into sinusoidal blood vessels. However, very little is known about what regulates proplatelet formation. To uncover which proteins were dynamically changing during this process, we compared the proteome and transcriptome of round vs proplatelet-producing MKs by 2D difference gel electrophoresis (DIGE) and polysome profiling, respectively. Our data revealed a significant increase in a poorly-characterized MK protein, myristoylated alanine-rich C-kinase substrate (MARCKS), which was upregulated 3.4- and 5.7-fold in proplatelet-producing MKs in 2D DIGE and polysome profiling analyses, respectively. MARCKS is a protein kinase C (PKC) substrate that binds PIP2. In MKs, it localized to both the plasma and demarcation membranes. MARCKS inhibition by peptide significantly decreased proplatelet formation 53%. To examine the role of MARCKS in the PKC pathway, we treated MKs with polymethacrylate (PMA), which markedly increased MARCKS phosphorylation while significantly inhibiting proplatelet formation 84%, suggesting that MARCKS phosphorylation reduces proplatelet formation. We hypothesized that MARCKS phosphorylation promotes Arp2/3 phosphorylation, which subsequently downregulates proplatelet formation; both MARCKS and Arp2 were dephosphorylated in MKs making proplatelets, and Arp2 inhibition enhanced proplatelet formation. Finally, we used MARCKS knockout (KO) mice to probe the direct role of MARCKS in proplatelet formation; MARCKS KO MKs displayed significantly decreased proplatelet levels. MARCKS expression and signaling in primary MKs is a novel finding. We propose that MARCKS acts as a "molecular switch," binding to and regulating PIP2 signaling to regulate processes like proplatelet extension (microtubule-driven) vs proplatelet branching (Arp2/3 and actin polymerization-driven).


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Megacariócitos/metabolismo , Proteínas de Membrana/fisiologia , Processamento de Proteína Pós-Traducional , Trombopoese/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Sequência de Aminoácidos , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Apoptose , Plaquetas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Fígado/citologia , Fígado/embriologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteína Quinase C/metabolismo , Transdução de Sinais
19.
Nat Commun ; 6: 8966, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608817

RESUMO

Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction.


Assuntos
Doença de Alexander/metabolismo , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/genética , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Adolescente , Adulto , Doença de Alexander/genética , Doença de Alexander/patologia , Animais , Astrócitos/patologia , Western Blotting , Morte Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Drosophila , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Lactente , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Organismos Geneticamente Modificados , Estresse Oxidativo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
20.
J Cell Physiol ; 230(6): 1389-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25521631

RESUMO

In eukaryotic cells, activation of phospholipase C (PLC)-coupled membrane receptors by hormones leads to an increase in the intracellular Ca(2+) concentration [Ca(2+) ]i . Catalytic activity of PLCs results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which opens DAG-sensitive classical transient receptor channels 3, 6, and 7 (TRPC3/6/7), initiating Ca(2+) influx from the extracellular space. Patients with focal segmental glomerulosclerosis (FSGS) express gain-of-function mutants of TRPC6, while others carry loss-of-function mutants of PLCε, raising the intriguing possibility that both proteins interact and might work in the same signalling pathway. While TRPC6 activation by PLCß and PLCγ isozymes was extensively studied, the role of PLCε in TRPC6 activation remains elusive. TRPC6 was co-immunoprecipitated with PLCε in a heterologous overexpression system in HEK293 cells as well as in freshly isolated murine podocytes. Receptor-operated TRPC6 currents in HEK293 cells expressing TRPC6 were reduced by a specific PLCε siRNA and by a PLCε loss-of-function mutant isolated from a patient with FSGS. PLCε-induced TRPC6 activation was also identified in murine embryonic fibroblasts (MEFs) lacking Gαq/11 proteins. Further analysis of the signal transduction pathway revealed a Gα12/13 Rho-GEF activation which induced Rho-mediated PLCε stimulation. Therefore, we identified a new pathway for TRPC6 activation by PLCε. PLCε-/- podocytes however, were undistinguishable from WT podocytes in their angiotensin II-induced formation of actin stress fibers and their GTPγS-induced TRPC6 activation, pointing to a redundant role of PLCε-mediated TRPC6 activation at least in podocytes.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Podócitos/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...