Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(12): 5036-5044, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124910

RESUMO

With strikingly high speed, data retention ability and storage density, resistive RAMs have emerged as a forerunning nonvolatile memory. Here we developed a Re-RAM with ultra-high density array of monocrystalline perovskite quantum wires (QWs) as the switching matrix with a metallic silver conducting pathway. The devices demonstrated high ON/OFF ratio of ∼107 and ultra-fast switching speed of ∼100 ps which is among the fastest in literature. The devices also possess long retention time of over 2 years and record high endurance of ∼6 × 106 cycles for all perovskite Re-RAMs reported. As a concept proof, we have also successfully demonstrated a flexible Re-RAM crossbar array device with a metal-semiconductor-insulator-metal design for sneaky path mitigation, which can store information with long retention. Aggressive downscaling to ∼14 nm lateral dimension produced an ultra-small cell effectively having 76.5 nm2 area for single bit storage. Furthermore, the devices also exhibited unique optical programmability among the low resistance states.

2.
Nature ; 581(7808): 278-282, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433619

RESUMO

Human eyes possess exceptional image-sensing characteristics such as an extremely wide field of view, high resolution and sensitivity with low aberration1. Biomimetic eyes with such characteristics are highly desirable, especially in robotics and visual prostheses. However, the spherical shape and the retina of the biological eye pose an enormous fabrication challenge for biomimetic devices2,3. Here we present an electrochemical eye with a hemispherical retina made of a high-density array of nanowires mimicking the photoreceptors on a human retina. The device design has a high degree of structural similarity to a human eye with the potential to achieve high imaging resolution when individual nanowires are electrically addressed. Additionally, we demonstrate the image-sensing function of our biomimetic device by reconstructing the optical patterns projected onto the device. This work may lead to biomimetic photosensing devices that could find use in a wide spectrum of technological applications.


Assuntos
Materiais Biomiméticos , Biomimética/instrumentação , Compostos de Cálcio , Nanofios , Óxidos , Retina , Titânio , Desenho de Equipamento , Humanos , Robótica/instrumentação , Visão Ocular
3.
Sci Rep ; 9(1): 6963, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061387

RESUMO

Extraordinary photovoltaic performance and intriguing optoelectronic properties of perovskite solar cells (PSCs) have aroused enormous interest from both academic research and photovoltaic (PV) industry. In order to bring PSC technology from laboratory to market, material stability, device flexibility, and scalability are important issues to address for vast production. Nevertheless, PSCs are still primarily prepared by solution methods which limit film scalability, while high-temperature processing of metal oxide electron transport layer (ETL) makes PSCs costly and incompatible with flexible substrates. Here, we demonstrate rarely-reported room-temperature radio frequency (RF) sputtered SnO2 as a promising ETL with suitable band structure, high transmittance, and excellent stability to replace its solution-processed counterpart. Power conversion efficiencies (PCEs) of 12.82% and 5.88% have been achieved on rigid glass substrate and flexible PEN substrate respectively. The former device retained 93% of its initial PCE after 192-hour exposure in dry air while the latter device maintained over 90% of its initial PCE after 100 consecutive bending cycles. The result is a solid stepping stone toward future PSC all-vapor-deposition fabrication which is being widely used in the PV industry now.

4.
Nano Lett ; 19(5): 2850-2857, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30933527

RESUMO

High-photoluminescence quantum yield (PLQY) is required to reach optimal performance in solar cells, lasers, and light-emitting diodes (LEDs). Typically, PLQY can be increased by improving the material quality to reduce the nonradiative recombination rate. It is in principle equally effective to improve the optical design by nanostructuring a material to increase light out-coupling efficiency (OCE) and introduce quantum confinement, both of which can increase the radiative recombination rate. However, increased surface recombination typically minimizes nanostructure gains in PLQY. Here a template-guided vapor phase growth of CH3NH3PbI3 (MAPbI3) nanowire (NW) arrays with unprecedented control of NW diameter from the bulk (250 nm) to the quantum confined regime (5.7 nm) is demonstrated, while simultaneously providing a low surface recombination velocity of 18 cm s-1. This enables a 56-fold increase in the internal PLQY, from 0.81% to 45.1%, and a 2.3-fold increase in OCEy to increase the external PLQY by a factor of 130, from 0.33% up to 42.6%, exclusively using nanophotonic design.

5.
Adv Mater ; 31(5): e1804285, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30520163

RESUMO

Wearable and portable devices with desirable flexibility, operational safety, and long cruising time, are in urgent demand for applications in wireless communications, multifunctional entertainments, personal healthcare monitoring, etc. Herein, a monolithically integrated self-powered smart sensor system with printed interconnects, printed gas sensor for ethanol and acetone detection, and printable supercapacitors and embedded solar cells as energy sources, is successfully demonstrated in a wearable wristband fashion by utilizing inkjet printing as a proof-of-concept. In such a "wearable wristband", the harvested solar energy can either directly drive the sensor and power up a light-emitting diode as a warning signal, or can be stored in the supercapacitors in a standby mode, and the energy released from supercapacitors can compensate the intermittency of light illumination. To the best of our knowledge, the demonstration of such a self-powered sensor system integrated onto a single piece of flexible substrate in a printable and additive manner has not previously been reported. Particularly, the printable supercapacitors deliver an areal capacitance of 12.9 mF cm-2 and the printed SnO2 gas sensor shows remarkable detection sensitivity under room temperature. The printable strategies for device fabrication and system integration developed here show great potency for scalable and facile fabrication of a variety of wearable devices.

6.
Nanoscale ; 10(32): 15164-15172, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30084853

RESUMO

The formamidinium lead iodide (FAPbI3) perovskite has attracted immense research interest as it has much improved stability than methylammonium lead iodide (MAPbI3) while still maintaining excellent optoelectronic properties. Compared to MAPbI3, FAPbI3 has shown an elevated decomposition temperature and a slower decomposition process and therefore it is considered as a more promising candidate for future high-efficiency and reliable optoelectronic devices. However, these excellent optoelectronic properties only exist in the alpha phase and this phase will spontaneously transform into an undesired delta phase with much poorer optoelectronic properties regardless of the environment. This is the main challenge for the application of the FAPbI3 perovskite. Herein, we report a novel strategy to stabilize the cubic black phase of FAPbI3 by using nanoengineering templates. Without further treatment, the black phase can be held over 7 months under ambient conditions and 8 days in an extreme environment with a Relative Humidity (RH) of 97%. A systematic study further reveals that this great improvement can be attributed to the spatial confinement in anodized alumina membrane (AAM) nanochannels, which prohibits the unwanted α-to-δ phase transition by restricting the expansion of NWs in the ab plane, and the excellent passivation against water molecule invasion. Meanwhile, we also demonstrate the potency of these NWs in practical applications by configuring them into photodetectors, which have shown reasonable response and excellent device stability.

7.
Int J Med Inform ; 84(10): 868-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238704

RESUMO

INTRODUCTION: Sub-optimal performance of healthcare providers in low-income countries is a critical and persistent global problem. The use of electronic health information technology (eHealth) in these settings is creating large-scale opportunities to automate performance measurement and provision of feedback to individual healthcare providers, to support clinical learning and behavior change. An electronic medical record system (EMR) deployed in 66 antiretroviral therapy clinics in Malawi collects data that supervisors use to provide quarterly, clinic-level performance feedback. Understanding barriers to provision of eHealth-based performance feedback for individual healthcare providers in this setting could present a relatively low-cost opportunity to significantly improve the quality of care. OBJECTIVE: The aims of this study were to identify and describe barriers to using EMR data for individualized audit and feedback for healthcare providers in Malawi and to consider how to design technology to overcome these barriers. METHODS: We conducted a qualitative study using interviews, observations, and informant feedback in eight public hospitals in Malawi where an EMR system is used. We interviewed 32 healthcare providers and conducted seven hours of observation of system use. RESULTS: We identified four key barriers to the use of EMR data for clinical performance feedback: provider rotations, disruptions to care processes, user acceptance of eHealth, and performance indicator lifespan. Each of these factors varied across sites and affected the quality of EMR data that could be used for the purpose of generating performance feedback for individual healthcare providers. CONCLUSION: Using routinely collected eHealth data to generate individualized performance feedback shows potential at large-scale for improving clinical performance in low-resource settings. However, technology used for this purpose must accommodate ongoing changes in barriers to eHealth data use. Understanding the clinical setting as a complex adaptive system (CAS) may enable designers of technology to effectively model change processes to mitigate these barriers.


Assuntos
Atitude do Pessoal de Saúde , Atitude Frente aos Computadores , Alfabetização Digital/estatística & dados numéricos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Uso Significativo/estatística & dados numéricos , Revisão da Utilização de Recursos de Saúde , Estudos de Casos e Controles , Malaui , Avaliação das Necessidades
8.
AMIA Annu Symp Proc ; 2015: 814-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26958217

RESUMO

Although performance feedback has the potential to help clinicians improve the quality and safety of care, healthcare organizations generally lack knowledge about how this guidance is best provided. In low-resource settings, tools for theory-informed feedback tailoring may enhance limited clinical supervision resources. Our objectives were to establish proof-of-concept for computer-supported feedback message tailoring in Malawi, Africa. We conducted this research in five stages: clinical performance measurement, modeling the influence of feedback on antiretroviral therapy (ART) performance, creating a rule-based message tailoring process, generating tailored messages for recipients, and finally analysis of performance and message tailoring data. We retrospectively generated tailored messages for 7,448 monthly performance reports from 11 ART clinics. We found that tailored feedback could be routinely generated for four guideline-based performance indicators, with 35% of reports having messages prioritized to optimize the effect of feedback. This research establishes proof-of-concept for a novel approach to improving the use of clinical performance feedback in low-resource settings and suggests possible directions for prospective evaluations comparing alternative designs of feedback messages.


Assuntos
Computadores , Avaliação de Desempenho Profissional , Retroalimentação , Fidelidade a Diretrizes , Pessoal de Saúde , Antirretrovirais/uso terapêutico , Registros Eletrônicos de Saúde , Infecções por HIV/tratamento farmacológico , Hospitais Públicos , Humanos , Malaui , Ambulatório Hospitalar , Guias de Prática Clínica como Assunto , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...