Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 48(11): 1239-1245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843329

RESUMO

TAK-164 is an antibody-drug conjugate (ADC) comprising human anti-guanylyl cyclase C (GCC) monoclonal antibody conjugated to indolinobenzodiazepine DNA alkylator IGN-P1 through a cleavable alanine-alanine dipeptide linker. TAK-164 is currently being evaluated for the treatment of gastrointestinal cancers expressing GCC. The catabolism of TAK-164 was studied using 3H-labeled ADC using GCC-expressing HEK-293 (GCC-HEK-293) cells, rat tritosomes, cathepsin B, and tumor-bearing mice. Time- and target-dependent uptake of [3H]TAK-164 was observed in GCC-HEK-293 cells with approximately 12% of radioactivity associated with DNA after 24 hours of incubation. Rat liver tritosomes and cathepsin B yielded IGN-P1 aniline, sulfonated IGN-P1 (s-IGN-P1) aniline, and a lysine conjugate of IGN-P1 (IGN-P1-Lys) aniline as catabolites. In tumor-bearing mice, [3H]TAK-164 exhibited a terminal half-life of approximately 41 and 51 hours in plasma and blood, respectively, with low plasma clearance (0.75 ml/h per kilogram). The extractable radioactivity in plasma and tumor samples revealed the presence of s-IGN-P1 aniline and IGN-P1 aniline as payload-related components. The use of a radiolabeled payload in the ADC in tumor uptake investigations provided direct and quantitative evidence for tumor uptake, DNA binding, and proof of mechanism of action of the payload. SIGNIFICANCE STATEMENT: Since payload-related species are potent cytotoxins, a thorough characterization of released products of ADCs, metabolites, and their drug interaction potential is necessary prior to clinical investigations. This study characterized in vitro and in vivo DNA binding mechanisms and released products of TAK-164. The methodologies described here will be highly useful for characterization of payload-related products of ADCs in general.


Assuntos
Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico , Receptores de Enterotoxina/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Catepsina B/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Meia-Vida , Humanos , Imunoconjugados/administração & dosagem , Microssomos Hepáticos , Neoplasias/patologia , Ratos , Receptores de Enterotoxina/metabolismo , Proteínas Recombinantes/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 19(10): 2079-2088, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788205

RESUMO

Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).


Assuntos
Imunoconjugados/uso terapêutico , Animais , Feminino , Células HEK293 , Humanos , Imunoconjugados/farmacologia , Camundongos , Camundongos Nus , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Anal Biochem ; 568: 1-6, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579655

RESUMO

Highly potent DNA damaging agents have become a key class of toxins for antibody-drug conjugate (ADC) based targeted therapy. However, until recently, no quantitative bioanalytical method was available to measure the toxin in the form of DNA adducts. In this work, a novel microwave assisted organic solvent extraction and LC-MS/MS based bioanalytical method was developed to extract and quantify DNA-bound toxin IGN-P1 in tissue samples. Using ADC-1 as the model ADC, the method was orthogonally checked with a radioactive method for the recovery of free toxins from DNA adducts in biological matrices. It was found that the bioanalytical method can achieve a high recovery of the IGN-P1 toxin from DNA adducts. In further assessment, tumor and organ tissue samples collected at multiple time points from in vivo studies after dosing with two other ADCs, ADC-2 and ADC-3, were measured by the method. Given the generic nature of the established bioanalytical method without the need of radiolabels, the methodology could be broadly utilized to quantitatively assess the relationship between DNA adduct levels and pharmacological/toxicological effects.


Assuntos
Benzodiazepinas/análise , Adutos de DNA/análise , Imunoconjugados/análise , Fígado/química , Baço/química , Animais , Cromatografia Líquida , Humanos , Espectrometria de Massas , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/diagnóstico
4.
Anal Chem ; 82(5): 1674-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20148572

RESUMO

Desorption electrospray ionization (DESI) directly analyzes soluble chemical components present on surfaces when a pneumatically assisted electrospray is directed at the sample. Here we demonstrate that the same spray desorption mechanism that operates in DESI can be used as a general technique to collect soluble materials present on surfaces. After desorption analytes are collected on a suitable collection surface, large areas can be scanned and collected onto a small collected area, which allows for preconcentration of low abundance material before analysis. This collection surface can then subsequently be analyzed by DESI but also by many other techniques such as gas chromatography-mass spectrometry or UV-vis spectroscopy. In addition this technique can be used to study desorption mechanisms in DESI independently from ionization mechanisms. Preliminary results indicate that the optimized conditions in DESI are a compromise between those conditions that are optimum for desorption and conditions that lead to efficient ionization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...