Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 27738, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27296892

RESUMO

By maintaining the Na(+) and K(+) transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aß) at the early stages of Alzheimer's disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aß(1-42) forms a tight (Kd of 3 µM), enthalpy-driven equimolar complex with α1ß1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aß(1-42) is localized in the "gap" between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aß(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aß(1-42) level. However prolonged increase of Aß(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática , Fluoresceína/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ligação Proteica , Transporte Proteico , ATPase Trocadora de Sódio-Potássio/química , Soluções , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...