Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256832

RESUMO

The mechanical damage of plant tissues leads to the activation of methanol production and its release into the atmosphere. The gaseous methanol or vapors emitted by the damaged plant induce resistance in neighboring intact plants to bacterial pathogens but create favorable conditions for viral infection spread. Among the Nicotiana benthamiana methanol-inducible genes (MIGs), most are associated with plant defense and intercellular transport. Here, we characterize NbMIG21, which encodes a 209 aa protein (NbMIG21p) that does not share any homology with annotated proteins. NbMIG21p was demonstrated to contain a nucleolus localization signal (NoLS). Colocalization studies with fibrillarin and coilin, nucleolus and Cajal body marker proteins, revealed that NbMIG21p is distributed among these subnuclear structures. Our results show that recombinant NbMIG21 possesses DNA-binding properties. Similar to a gaseous methanol effect, an increased NbMIG21 expression leads to downregulation of the nuclear import of proteins with nuclear localization signals (NLSs), as was demonstrated with the GFP-NLS model protein. Moreover, upregulated NbMIG21 expression facilitates tobacco mosaic virus (TMV) intercellular transport and reproduction. We identified an NbMIG21 promoter (PrMIG21) and showed that it is methanol sensitive; thus, the induction of NbMIG21 mRNA accumulation occurs at the level of transcription. Our findings suggest that methanol-activated NbMIG21 might participate in creating favorable conditions for viral reproduction and spread.

2.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629021

RESUMO

Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant-virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1-3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1-2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1-2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.


Assuntos
Nicotiana , Vírus do Mosaico do Tabaco , Nicotiana/genética , Peptídeos , Glicosilação , Antivirais
3.
Front Plant Sci ; 11: 959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670343

RESUMO

During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.

4.
Eur J Med Chem ; 183: 111723, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557613

RESUMO

A set of ortho-, meta- and para-substituted cinnamic hydroxamic acids (CHAs) was synthesized. In each series of structural isomers, a phenyl substituent was linked to an aromatic ring of the parent cinnamic acid via a linker of one to four atoms in length. Using a cell test system with the full-length replicon of hepatitis C virus (HCV), we established a relationship between the suppression of HCV replicon propagation and the inhibition of class I/IIb histone deacetylases (HDACs). Anti-HCV activity correlated with the inhibition of HDAC8 in the case of ortho-CHAs, while in the case of meta-CHAs it correlated with the inhibition of HDAC1/2/3 and HDAC6. The antiviral activity of para-CHAs was many times stronger than that of meta-CHAs with about the same efficiency of HDAC1/2/3/6 inhibition, which indicated the existence of an additional cell target that does not belong to the studied group of HDACs.


Assuntos
Antivirais/química , Antivirais/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Isomerismo , Replicação Viral/efeitos dos fármacos
5.
Bioorg Med Chem Lett ; 25(11): 2382-5, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25937017

RESUMO

Recently we reported benzohydroxamic acids (BHAs) as potent and selective inhibitors of hepatitis C virus (HCV) replicon propagation. In this work 12 pyridine hydroxamic acids (PHAs) were synthesized and tested in full-genome replicon assay. It was found that PHAs possessed very similar anti-HCV properties compared to BHAs. Both classes of hydroxamic acids caused hyperacetylation of α-tubulin pointing to inhibition of histone deacetylase 6 (HDAC6) as part of their antiviral activity. The tested compounds did not inhibit the growth of poliovirus, displaying high selectivity against HCV.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Piridinas/química , Antivirais/química , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/química , Estrutura Molecular , Poliovirus/efeitos dos fármacos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...