Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 271: 119195, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581125

RESUMO

AIMS: Ulcerative colitis and Crohn's disease, collectively known as inflammatory bowel disease (IBD), are chronic inflammatory disorders of the intestine for which key elements in disease initiation and perpetuation are defects in epithelial barrier integrity. Achieving mucosal healing is essential to ameliorate disease outcome and so new therapies leading to epithelial homeostasis and repair are under investigation. This study was designed to determine the mechanisms by which IL-22 regulates intestinal epithelial cell function. MAIN METHODS: Human intestinal organoids and resections, as well as mice were used to evaluate the effect of IL-22 on stem cell expansion, proliferation and expression of mucus components. IL-22 effect on barrier function was assessed in polarized T-84 cell monolayers. Butyrate co-treatments and organoid co-cultures with immune cells were performed to monitor the impact of microbial-derived metabolites and inflammatory environments on IL-22 responses. KEY FINDINGS: IL-22 led to epithelial stem cell expansion, proliferation, barrier dysfunction and anti-microbial peptide production in human and mouse models evaluated. IL-22 also altered the mucus layer by inducing an increase in membrane mucus but a decrease in secreted mucus and goblet cell content. IL-22 had the same effect on anti-microbial peptides and membrane mucus in both healthy and IBD human samples. In contrast, this IL-22-associated epithelial phenotype was different when treatments were performed in presence of butyrate and organoids co-cultured with immune cells. SIGNIFICANCE: Our data indicate that IL-22 promotes epithelial regeneration, innate defense and membrane mucus production, strongly supporting the potential clinical utility of IL-22 as a mucosal healing therapy in IBD.


Assuntos
Células Epiteliais/fisiologia , Homeostase/fisiologia , Interleucinas/fisiologia , Interleucinas/uso terapêutico , Mucosa Intestinal/fisiologia , Animais , Linhagem Celular , Técnicas de Cocultura , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Células Epiteliais/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Interleucinas/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/fisiologia , Interleucina 22
2.
Sci Rep ; 10(1): 4696, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170183

RESUMO

Intestinal permeability and neutrophil activity are closely linked to inflammatory bowel disease (IBD) pathophysiology. Here we discuss two techniques for assessing permeability and neutrophil activity in mouse IBD models using near infrared (NIR) detection. To address the limitation of visible light readouts-namely high background-IRDye 800CW was used to enable rapid, non-terminal measurements of intestinal permeability. The increased sensitivity of NIR readouts for colon permeability is shown using dextran sulfate sodium (DSS) and anti-CD40 murine colitis models in response to interleukin-22 immunoglobulin Fc (IL22Fc) fusion protein and anti-p40 monoclonal antibody treatments, respectively. In addition to enhanced permeability, elevated levels of neutrophil elastase (NE) have been reported in inflamed colonic mucosal tissue. Activatable NIR fluorescent probes have been extensively used for disease activity evaluation in oncologic animal models, and we demonstrate their translatability using a NE-activatable reagent to evaluate inflammation in DSS mice. Confocal laser endomicroscopy (CLE) and tissue imaging allow visualization of spatial NE activity throughout diseased colon as well as changes in disease severity from IL22Fc treatment. Our findings with the 800CW dye and the NE probe highlight the ease of their implementation in preclinical IBD research.


Assuntos
Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Imagem Óptica/métodos , Animais , Transporte Biológico , Biomarcadores , Modelos Animais de Doenças , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/etiologia , Elastase de Leucócito/metabolismo , Camundongos , Microscopia Confocal , Permeabilidade , Espectroscopia de Luz Próxima ao Infravermelho
3.
Bioorg Med Chem Lett ; 29(14): 1799-1806, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31101472

RESUMO

A high-throughput screen against Inventiva's compound library using a Gal4/RORγ-LBD luciferase reporter gene assay led to the discovery of a new series of quinoline sulphonamides as RORγ inhibitors, eventually giving rise to a lead compound having an interesting in vivo profile after oral administration. This lead was evaluated in a target engagement model in mouse, where it reduced IL-17 cytokine production after immune challenge. It also proved to be active in a multiple sclerosis model (EAE) where it reduced the disease score. The synthesis, structure activity relationship (SAR) and biological activity of these derivatives is described herein.


Assuntos
Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Quinolinas/química , Animais , Modelos Animais de Doenças , Humanos , Camundongos
4.
MAbs ; 7(3): 605-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25764208

RESUMO

Interleukin-1 (IL-1) cytokines such as IL-1α, IL-1ß, and IL-1Ra contribute to immune regulation and inflammatory processes by exerting a wide range of cellular responses, including expression of cytokines and chemokines, matrix metalloproteinases, and nitric oxide synthetase. IL-1α and IL-1ß bind to IL-1R1 complexed to the IL-1 receptor accessory protein and induce similar physiological effects. Preclinical and clinical studies provide significant evidence for the role of IL-1 in the pathogenesis of osteoarthritis (OA), including cartilage degradation, bone sclerosis, and synovial proliferation. Here, we describe the generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-Ig) of the IgG1/k subtype that specifically and potently neutralizes IL-1α and IL-1ß. In ABT-981, the IL-1ß variable domain resides in the outer domain of the DVD-Ig, whereas the IL-1α variable domain is located in the inner position. ABT-981 specifically binds to IL-1α and IL-1ß, and is physically capable of binding 2 human IL-1α and 2 human IL-1ß molecules simultaneously. Single-dose intravenous and subcutaneous pharmacokinetics studies indicate that ABT-981 has a half-life of 8.0 to 10.4 d in cynomolgus monkey and 10.0 to 20.3 d in rodents. ABT-981 exhibits suitable drug-like-properties including affinity, potency, specificity, half-life, and stability for evaluation in human clinical trials. ABT-981 offers an exciting new approach for the treatment of OA, potentially addressing both disease modification and symptom relief as a disease-modifying OA drug.


Assuntos
Anticorpos Neutralizantes/química , Imunoglobulina G/química , Região Variável de Imunoglobulina/química , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/farmacologia , Interleucina-1alfa/química , Interleucina-1alfa/imunologia , Interleucina-1beta/química , Interleucina-1beta/imunologia , Camundongos
5.
Neuroimage ; 64: 341-55, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22982372

RESUMO

The earliest stages of osteoarthritis are characterized by peripheral pathology; however, during disease progression chronic pain emerges-a major symptom of osteoarthritis linked to neuroplasticity. Recent clinical imaging studies involving chronic pain patients, including osteoarthritis patients, have demonstrated that functional properties of the brain are altered, and these functional changes are correlated with subjective behavioral pain measures. Currently, preclinical osteoarthritis studies have not assessed if functional properties of supraspinal pain circuitry are altered, and if these functional properties can be modulated by pharmacological therapy either by direct or indirect action on brain systems. In the current study, functional connectivity was first assessed in order to characterize the functional neuroplasticity occurring in the rodent medial meniscus tear (MMT) model of osteoarthritis-a surgical model of osteoarthritis possessing peripheral joint trauma and a hypersensitive pain state. In addition to knee joint trauma at week 3 post-MMT surgery, we observed that supraspinal networks have increased functional connectivity relative to sham animals. Importantly, we observed that early and sustained treatment with a novel, peripherally acting broad-spectrum matrix metalloproteinase (MMP) inhibitor (MMPi) significantly attenuates knee joint trauma (cartilage degradation) as well as supraspinal functional connectivity increases in MMT animals. At week 5 post-MMT surgery, the acute pharmacodynamic effects of celecoxib (selective cyclooxygenase-2 inhibitor) on brain function were evaluated using pharmacological magnetic resonance imaging (phMRI) and functional connectivity analysis. Celecoxib was chosen as a comparator, given its clinical efficacy for alleviating pain in osteoarthritis patients and its peripheral and central pharmacological action. Relative to the vehicle condition, acute celecoxib treatment in MMT animals yielded decreased phMRI infusion responses and decreased functional connectivity, the latter observation being similar to what was detected following chronic MMPi treatment. These findings demonstrate that an assessment of brain function may provide an objective means by which to further evaluate the pathology of an osteoarthritis state as well as measure the pharmacodynamic effects of therapies with peripheral or peripheral and central pharmacological action.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Rede Nervosa/fisiopatologia , Osteoartrite/fisiopatologia , Dor/fisiopatologia , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Celecoxib , Humanos , Masculino , Rede Nervosa/efeitos dos fármacos , Osteoartrite/complicações , Osteoartrite/tratamento farmacológico , Dor/etiologia , Dor/prevenção & controle , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew
6.
Cancer Res ; 65(1): 246-53, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15665301

RESUMO

The perinucleolar compartment (PNC) is a multicomponent nuclear structure enriched with RNAs transcribed by RNA pol III and RNA binding proteins. Studies in cultured cells showed an association between PNC and transformed phenotype. To evaluate the relationship between structure and malignancy in vivo, we examined PNC prevalence (the percentage of cells containing at least one PNC) in normal and cancerous paraffin-embedded breast tissues using immunohistochemistry against a PNC-associated protein. Five hundred nuclei in the most active area of each sample were scored for PNC prevalence. The results show that PNC prevalence significantly correlates with the progression of breast cancer (by the criteria of staging). PNC prevalence in primary tumors, lymph nodes, and distant metastases shows a stepwise increase from a median of 23% in primary tumors to approximately 100% in distant metastases. In addition, univariate and multivariate (controlling for tumor size and grade) analyses show that early-stage patients with invasive ductal carcinomas containing a higher PNC prevalence have a significantly poorer prognosis. These findings link PNC prevalence with the progression of breast cancer in vivo and suggest that PNC-containing cells have metastatic advantages. These findings also show the potential of PNC prevalence as a prognostic marker for breast cancer.


Assuntos
Neoplasias da Mama/patologia , Nucléolo Celular/patologia , Idoso , Núcleo Celular/patologia , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico
7.
J Orthop Res ; 21(4): 730-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12798075

RESUMO

The unilateral canine model is the most commonly used model of experimental osteoarthritis (OA). In this model, the anterior cruciate ligament (ACL) of one knee is transected and the contralateral joint is usually used as a control. However, dogs, similar to humans, can develop OA spontaneously with old age. Additionally, certain breeds of dogs are genetically predisposed to OA and can develop symptoms at a young age. The goal of this study was to compare the pathological changes of proteoglycans in OA cartilage from dogs that developed OA spontaneously to those that underwent ACL transection. For this reason, biglycan, decorin and fibromodulin levels and degradation patterns were compared by Western blot hybridization, and aggrecan contents were quantified by dimethylmethylene blue assay. The changes in proteoglycan levels in the cartilage of dogs with spontaneous OA, regardless of their age, were very similar to those published for human OA cartilage. However, when OA developed as a result of ACL-surgery, the changes in proteoglycans were different from those of slowly developing spontaneous OA. Therefore, these differences should be taken into consideration when the ACL-transection model is used.


Assuntos
Proteínas da Matriz Extracelular , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Proteoglicanas/metabolismo , Agrecanas , Envelhecimento/patologia , Animais , Ligamento Cruzado Anterior/cirurgia , Especificidade de Anticorpos , Biglicano , Cartilagem/metabolismo , Decorina , Modelos Animais de Doenças , Cães , Lectinas Tipo C , Proteoglicanas/imunologia
8.
J Biol Chem ; 278(40): 39214-23, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12732630

RESUMO

The targeted disruption of cartilage link protein gene (Crtl1) in homozygous mice resulted in a severe chondrodysplasia and perinatal lethality. This raised the question of whether the abnormalities seen in Crtl1 null mice are all caused by the absence of link protein in cartilage or whether the deficiency of the protein in other tissues and organs contributed to the phenotype. To address this question we have generated transgenic mice overexpressing cartilage link protein under the control of a cartilage-specific promoter, and then these transgenic mice were used for a genetic rescue of abnormalities in Crtl1 null mice. While the overexpression of cartilage link protein resulted in no abnormal phenotype, the cartilage-specific transgene expression of link protein could completely prevent the perinatal mortality of link protein-deficient mice and, depending on the level of the link protein expression, rescue skeletal abnormalities. Although link protein was originally isolated from cartilage, we found and determined Crtl1 transcripts and corresponding proteins in every organ tested from mouse embryos to aging animals. We also identified three additional members of the link protein family, all co-localized with hyaluronic acid-binding proteoglycans in the mouse genome. The ubiquitous presence of link protein suggests a general and systemic function of link protein in the organization of extracellular matrix in a number of tissues, possibly interacting with other proteoglycans, such as versican, brevican, and neurocan.


Assuntos
Exostose Múltipla Hereditária/genética , Proteínas da Matriz Extracelular , Proteínas/genética , Proteoglicanas , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Brevicam , Cartilagem/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Clonagem Molecular , Genótipo , Homozigoto , Ácido Hialurônico/metabolismo , Lectinas Tipo C , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Neurocam , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Transcrição Gênica , Transgenes , Versicanas
9.
Development ; 130(10): 2253-61, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12668637

RESUMO

Mucification of the cumulus layer around the oocyte is an obligatory process for female fertility. Tumor necrosis factor-induced protein-6 (TNFIP6 or TSG6) has been shown to be specifically expressed during this process. We have generated TNFIP6-deficient mice and tested the ability of their cumulus cells to undergo mucification. Cumulus cell-oocyte complexes fail to expand in TNFIP6-deficient female mice because of the inability of the cumulus cells to assemble their hyaluronan-rich extracellular matrix. The impaired cumulus matrix formation is due to the lack of covalent complexes between hyaluronan and the heavy chains of the inter-alpha-trypsin inhibitor family. As a consequence, TNFIP6-deficient females are sterile. Cultured TNFIP6-deficient cumulus cell-oocyte complexes also fail to expand when stimulated with dibutyryl cyclic AMP or epidermal growth factor. Recombinant TNFIP6 is able to catalyze the covalent transfer of heavy chains to hyaluronan in a cell-free system, restore the expansion of Tnfip6-null cumulus cell-oocyte complexes in vitro, and rescue the fertility in Tnfip6-null females. These results provide clear evidence that TNFIP6 is a key catalyst in the formation of the cumulus extracellular matrix and indispensable for female fertility.


Assuntos
Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Infertilidade Feminina , Oócitos/fisiologia , Animais , Moléculas de Adesão Celular/genética , Feminino , Genótipo , Humanos , Ácido Hialurônico/química , Masculino , Camundongos , Camundongos Knockout , Oócitos/citologia , Ovário/anatomia & histologia , Ovário/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Arthritis Rheum ; 46(8): 2207-18, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12209527

RESUMO

OBJECTIVE: To study the chondroprotective effect of constitutively expressed TSG-6 protein (tumor necrosis factor alpha-induced protein 6; Tnfip6) in cartilage, using antigen-induced arthritis (AIA) in mice. METHODS: Transgenic mice constitutively expressing TSG-6 protein in cartilage were generated. Cartilage-specific constitutive expression of TSG-6 protein was confirmed by in situ hybridization, Western blot analysis, and immunohistochemistry. Control and transgenic mice were immunized with methylated bovine serum albumin (mBSA), and arthritis was induced by the intraarticular injection of mBSA. Mice were monitored up to day 35 after the challenge, and knee joint sections were examined for loss of cartilage proteoglycan (aggrecan) using Safranin O staining and antibodies to neoepitopes generated by various metalloproteinases (MPs). The loss of aggrecan in Safranin O-stained sections was quantified by morphometric methods. RESULTS: Tsg6/tnfip6 transgenic mice constitutively expressed tsg6/tnfip6 messenger RNA and corresponding TSG-6 protein in cartilage from embryonic life through adulthood, without any phenotypic abnormalities. These mice were used for AIA studies. Intraarticular injection of mBSA uniformly induced severe inflammation both in control (wild-type and an irrelevant transgenic line) mice and in tsg6/tnfip6 transgenic mice. In contrast to the mBSA-injected knee joints of control animals that were heavily damaged from day 5, the cartilage of transgenic mice that constitutively expressed TSG-6 protein remained intact for at least 1 week, and this was followed by a relatively reduced loss of aggrecan. Concomitant with the loss of aggrecan, MP-generated neoepitopes accumulated in unprotected joints. By day 35, the proteoglycan content returned to nearly normal levels in tsg6/tnfip6 transgenic mice, whereas it remained low in MP-damaged knee cartilage of control mice. CONCLUSION: TSG-6 protein is known to form a complex with inter-alpha-inhibitor (IalphaI), a potent serine protease inhibitor, which may be immobilized via the hyaluronan (HA)-binding domain of TSG-6 protein in the HA-rich extracellular matrix of cartilage. Thus, the local accumulation of TSG-6 protein and TSG-6 protein-bound IalphaI in tsg6/tnfip6 transgenic mice may inhibit serine proteases and subsequent activation of MPs. It is suggested that this mechanism might protect cartilage from extensive degradation even in the presence of acute inflammation.


Assuntos
Anti-Inflamatórios/metabolismo , Artrite Experimental/metabolismo , Artrite Experimental/prevenção & controle , Cartilagem Articular/metabolismo , Moléculas de Adesão Celular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Animais Recém-Nascidos , Artrite Experimental/patologia , Western Blotting , Cartilagem Articular/citologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Clonagem Molecular , Humanos , Imuno-Histoquímica , Hibridização In Situ , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...